mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
403 lines
14 KiB
Python
403 lines
14 KiB
Python
"""
|
|
OpenAI-like chat completion handler
|
|
|
|
For handling OpenAI-like chat completions, like IBM WatsonX, etc.
|
|
"""
|
|
|
|
import json
|
|
from typing import Any, Callable, Optional, Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm import LlmProviders
|
|
from litellm.llms.bedrock.chat.invoke_handler import MockResponseIterator
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
from litellm.llms.databricks.streaming_utils import ModelResponseIterator
|
|
from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig
|
|
from litellm.llms.openai.openai import OpenAIConfig
|
|
from litellm.types.utils import CustomStreamingDecoder, ModelResponse
|
|
from litellm.utils import CustomStreamWrapper, ProviderConfigManager
|
|
|
|
from ..common_utils import OpenAILikeBase, OpenAILikeError
|
|
from .transformation import OpenAILikeChatConfig
|
|
|
|
|
|
async def make_call(
|
|
client: Optional[AsyncHTTPHandler],
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
fake_stream: bool = False,
|
|
):
|
|
if client is None:
|
|
client = litellm.module_level_aclient
|
|
|
|
response = await client.post(
|
|
api_base, headers=headers, data=data, stream=not fake_stream
|
|
)
|
|
|
|
if streaming_decoder is not None:
|
|
completion_stream: Any = streaming_decoder.aiter_bytes(
|
|
response.aiter_bytes(chunk_size=1024)
|
|
)
|
|
elif fake_stream:
|
|
model_response = ModelResponse(**response.json())
|
|
completion_stream = MockResponseIterator(model_response=model_response)
|
|
else:
|
|
completion_stream = ModelResponseIterator(
|
|
streaming_response=response.aiter_lines(), sync_stream=False
|
|
)
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=completion_stream, # Pass the completion stream for logging
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream
|
|
|
|
|
|
def make_sync_call(
|
|
client: Optional[HTTPHandler],
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
fake_stream: bool = False,
|
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
|
):
|
|
if client is None:
|
|
client = litellm.module_level_client # Create a new client if none provided
|
|
|
|
response = client.post(
|
|
api_base, headers=headers, data=data, stream=not fake_stream, timeout=timeout
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
raise OpenAILikeError(status_code=response.status_code, message=response.read())
|
|
|
|
if streaming_decoder is not None:
|
|
completion_stream = streaming_decoder.iter_bytes(
|
|
response.iter_bytes(chunk_size=1024)
|
|
)
|
|
elif fake_stream:
|
|
model_response = ModelResponse(**response.json())
|
|
completion_stream = MockResponseIterator(model_response=model_response)
|
|
else:
|
|
completion_stream = ModelResponseIterator(
|
|
streaming_response=response.iter_lines(), sync_stream=True
|
|
)
|
|
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response="first stream response received",
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream
|
|
|
|
|
|
class OpenAILikeChatHandler(OpenAILikeBase):
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
async def acompletion_stream_function(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
custom_llm_provider: str,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
data: dict,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
client: Optional[AsyncHTTPHandler] = None,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
fake_stream: bool = False,
|
|
) -> CustomStreamWrapper:
|
|
data["stream"] = True
|
|
completion_stream = await make_call(
|
|
client=client,
|
|
api_base=api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
streaming_decoder=streaming_decoder,
|
|
)
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
logging_obj=logging_obj,
|
|
)
|
|
|
|
return streamwrapper
|
|
|
|
async def acompletion_function(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
custom_llm_provider: str,
|
|
print_verbose: Callable,
|
|
client: Optional[AsyncHTTPHandler],
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
data: dict,
|
|
base_model: Optional[str],
|
|
optional_params: dict,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
|
json_mode: bool = False,
|
|
) -> ModelResponse:
|
|
if timeout is None:
|
|
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
|
|
|
|
if client is None:
|
|
client = litellm.module_level_aclient
|
|
|
|
try:
|
|
response = await client.post(
|
|
api_base, headers=headers, data=json.dumps(data), timeout=timeout
|
|
)
|
|
response.raise_for_status()
|
|
except httpx.HTTPStatusError as e:
|
|
raise OpenAILikeError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text,
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise OpenAILikeError(status_code=408, message="Timeout error occurred.")
|
|
except Exception as e:
|
|
raise OpenAILikeError(status_code=500, message=str(e))
|
|
|
|
return OpenAILikeChatConfig._transform_response(
|
|
model=model,
|
|
response=response,
|
|
model_response=model_response,
|
|
stream=stream,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
api_key=api_key,
|
|
data=data,
|
|
messages=messages,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
json_mode=json_mode,
|
|
custom_llm_provider=custom_llm_provider,
|
|
base_model=base_model,
|
|
)
|
|
|
|
def completion(
|
|
self,
|
|
*,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_llm_provider: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key: Optional[str],
|
|
logging_obj,
|
|
optional_params: dict,
|
|
acompletion=None,
|
|
litellm_params: dict = {},
|
|
logger_fn=None,
|
|
headers: Optional[dict] = None,
|
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
|
custom_endpoint: Optional[bool] = None,
|
|
streaming_decoder: Optional[
|
|
CustomStreamingDecoder
|
|
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
|
|
fake_stream: bool = False,
|
|
):
|
|
custom_endpoint = custom_endpoint or optional_params.pop(
|
|
"custom_endpoint", None
|
|
)
|
|
base_model: Optional[str] = optional_params.pop("base_model", None)
|
|
api_base, headers = self._validate_environment(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
endpoint_type="chat_completions",
|
|
custom_endpoint=custom_endpoint,
|
|
headers=headers,
|
|
)
|
|
|
|
stream: bool = optional_params.pop("stream", None) or False
|
|
extra_body = optional_params.pop("extra_body", {})
|
|
json_mode = optional_params.pop("json_mode", None)
|
|
optional_params.pop("max_retries", None)
|
|
if not fake_stream:
|
|
optional_params["stream"] = stream
|
|
|
|
if messages is not None and custom_llm_provider is not None:
|
|
provider_config = ProviderConfigManager.get_provider_chat_config(
|
|
model=model, provider=LlmProviders(custom_llm_provider)
|
|
)
|
|
if isinstance(provider_config, OpenAIGPTConfig) or isinstance(
|
|
provider_config, OpenAIConfig
|
|
):
|
|
messages = provider_config._transform_messages(
|
|
messages=messages, model=model
|
|
)
|
|
|
|
data = {
|
|
"model": model,
|
|
"messages": messages,
|
|
**optional_params,
|
|
**extra_body,
|
|
}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"api_base": api_base,
|
|
"headers": headers,
|
|
},
|
|
)
|
|
if acompletion is True:
|
|
if client is None or not isinstance(client, AsyncHTTPHandler):
|
|
client = None
|
|
if (
|
|
stream is True
|
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
|
data["stream"] = stream
|
|
return self.acompletion_stream_function(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=api_base,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=stream,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
client=client,
|
|
custom_llm_provider=custom_llm_provider,
|
|
streaming_decoder=streaming_decoder,
|
|
fake_stream=fake_stream,
|
|
)
|
|
else:
|
|
return self.acompletion_function(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=api_base,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
custom_llm_provider=custom_llm_provider,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=stream,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
timeout=timeout,
|
|
base_model=base_model,
|
|
client=client,
|
|
json_mode=json_mode,
|
|
)
|
|
else:
|
|
## COMPLETION CALL
|
|
if stream is True:
|
|
completion_stream = make_sync_call(
|
|
client=(
|
|
client
|
|
if client is not None and isinstance(client, HTTPHandler)
|
|
else None
|
|
),
|
|
api_base=api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
streaming_decoder=streaming_decoder,
|
|
fake_stream=fake_stream,
|
|
timeout=timeout,
|
|
)
|
|
# completion_stream.__iter__()
|
|
return CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
logging_obj=logging_obj,
|
|
)
|
|
else:
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = HTTPHandler(timeout=timeout) # type: ignore
|
|
try:
|
|
response = client.post(
|
|
url=api_base, headers=headers, data=json.dumps(data)
|
|
)
|
|
response.raise_for_status()
|
|
|
|
except httpx.HTTPStatusError as e:
|
|
raise OpenAILikeError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text,
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise OpenAILikeError(
|
|
status_code=408, message="Timeout error occurred."
|
|
)
|
|
except Exception as e:
|
|
raise OpenAILikeError(status_code=500, message=str(e))
|
|
return OpenAILikeChatConfig._transform_response(
|
|
model=model,
|
|
response=response,
|
|
model_response=model_response,
|
|
stream=stream,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
api_key=api_key,
|
|
data=data,
|
|
messages=messages,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
json_mode=json_mode,
|
|
custom_llm_provider=custom_llm_provider,
|
|
base_model=base_model,
|
|
)
|