mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
* test: add initial e2e test * fix(vertex_ai/files): initial commit adding sync file create support * refactor: initial commit of vertex ai non-jsonl files reaching gcp endpoint * fix(vertex_ai/files/transformation.py): initial working commit of non-jsonl file call reaching backend endpoint * fix(vertex_ai/files/transformation.py): working e2e non-jsonl file upload * test: working e2e jsonl call * test: unit testing for jsonl file creation * fix(vertex_ai/transformation.py): reset file pointer after read allow multiple reads on same file object * fix: fix linting errors * fix: fix ruff linting errors * fix: fix import * fix: fix linting error * fix: fix linting error * fix(vertex_ai/files/transformation.py): fix linting error * test: update test * test: update tests * fix: fix linting errors * fix: fix test * fix: fix linting error
138 lines
4.7 KiB
Python
138 lines
4.7 KiB
Python
from typing import Any, List, Optional, Union
|
|
|
|
from httpx import Headers, Response
|
|
|
|
import litellm
|
|
from litellm.llms.base_llm.chat.transformation import (
|
|
BaseConfig,
|
|
BaseLLMException,
|
|
LiteLLMLoggingObj,
|
|
)
|
|
from litellm.types.llms.openai import AllMessageValues
|
|
from litellm.types.utils import ModelResponse
|
|
|
|
from ..common_utils import PetalsError
|
|
|
|
|
|
class PetalsConfig(BaseConfig):
|
|
"""
|
|
Reference: https://github.com/petals-infra/chat.petals.dev#post-apiv1generate
|
|
The `PetalsConfig` class encapsulates the configuration for the Petals API. The properties of this class are described below:
|
|
|
|
- `max_length` (integer): This represents the maximum length of the generated text (including the prefix) in tokens.
|
|
|
|
- `max_new_tokens` (integer): This represents the maximum number of newly generated tokens (excluding the prefix).
|
|
|
|
The generation parameters are compatible with `.generate()` from Hugging Face's Transformers library:
|
|
|
|
- `do_sample` (boolean, optional): If set to 0 (default), the API runs greedy generation. If set to 1, the API performs sampling using the parameters below:
|
|
|
|
- `temperature` (float, optional): This value sets the temperature for sampling.
|
|
|
|
- `top_k` (integer, optional): This value sets the limit for top-k sampling.
|
|
|
|
- `top_p` (float, optional): This value sets the limit for top-p (nucleus) sampling.
|
|
|
|
- `repetition_penalty` (float, optional): This helps apply the repetition penalty during text generation, as discussed in this paper.
|
|
"""
|
|
|
|
max_length: Optional[int] = None
|
|
max_new_tokens: Optional[
|
|
int
|
|
] = litellm.max_tokens # petals requires max tokens to be set
|
|
do_sample: Optional[bool] = None
|
|
temperature: Optional[float] = None
|
|
top_k: Optional[int] = None
|
|
top_p: Optional[float] = None
|
|
repetition_penalty: Optional[float] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_length: Optional[int] = None,
|
|
max_new_tokens: Optional[
|
|
int
|
|
] = litellm.max_tokens, # petals requires max tokens to be set
|
|
do_sample: Optional[bool] = None,
|
|
temperature: Optional[float] = None,
|
|
top_k: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
repetition_penalty: Optional[float] = None,
|
|
) -> None:
|
|
locals_ = locals().copy()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return super().get_config()
|
|
|
|
def get_error_class(
|
|
self, error_message: str, status_code: int, headers: Union[dict, Headers]
|
|
) -> BaseLLMException:
|
|
return PetalsError(
|
|
status_code=status_code, message=error_message, headers=headers
|
|
)
|
|
|
|
def get_supported_openai_params(self, model: str) -> List:
|
|
return ["max_tokens", "temperature", "top_p", "stream"]
|
|
|
|
def map_openai_params(
|
|
self,
|
|
non_default_params: dict,
|
|
optional_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
) -> dict:
|
|
for param, value in non_default_params.items():
|
|
if param == "max_tokens":
|
|
optional_params["max_new_tokens"] = value
|
|
if param == "temperature":
|
|
optional_params["temperature"] = value
|
|
if param == "top_p":
|
|
optional_params["top_p"] = value
|
|
if param == "stream":
|
|
optional_params["stream"] = value
|
|
return optional_params
|
|
|
|
def transform_request(
|
|
self,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
headers: dict,
|
|
) -> dict:
|
|
raise NotImplementedError(
|
|
"Petals transformation currently done in handler.py. [TODO] Move to the transformation.py"
|
|
)
|
|
|
|
def transform_response(
|
|
self,
|
|
model: str,
|
|
raw_response: Response,
|
|
model_response: ModelResponse,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
request_data: dict,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
encoding: Any,
|
|
api_key: Optional[str] = None,
|
|
json_mode: Optional[bool] = None,
|
|
) -> ModelResponse:
|
|
raise NotImplementedError(
|
|
"Petals transformation currently done in handler.py. [TODO] Move to the transformation.py"
|
|
)
|
|
|
|
def validate_environment(
|
|
self,
|
|
headers: dict,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
api_key: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
) -> dict:
|
|
return {}
|