litellm-mirror/tests/local_testing/test_token_counter.py
Krish Dholakia f9df01fbc6
fix(utils.py): handle token counter error when invalid message passed in (#8670)
* fix(utils.py): handle token counter error

* fix(utils.py): testing fixes

* fix(utils.py): fix incr for num tokens from list

* fix(utils.py): fix text str token counting
2025-02-19 22:21:34 -08:00

531 lines
20 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#### What this tests ####
# This tests litellm.token_counter() function
import traceback
import os
import sys
import time
from unittest.mock import MagicMock
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from unittest.mock import AsyncMock, MagicMock, patch
import litellm
from litellm import (
create_pretrained_tokenizer,
decode,
encode,
get_modified_max_tokens,
token_counter,
)
from large_text import text
from messages_with_counts import (
MESSAGES_TEXT,
MESSAGES_WITH_IMAGES,
MESSAGES_WITH_TOOLS,
)
def test_token_counter_normal_plus_function_calling():
try:
messages = [
{"role": "system", "content": "System prompt"},
{"role": "user", "content": "content1"},
{"role": "assistant", "content": "content2"},
{"role": "user", "content": "conten3"},
{
"role": "assistant",
"content": None,
"tool_calls": [
{
"id": "call_E0lOb1h6qtmflUyok4L06TgY",
"function": {
"arguments": '{"query":"search query","domain":"google.ca","gl":"ca","hl":"en"}',
"name": "SearchInternet",
},
"type": "function",
}
],
},
{
"tool_call_id": "call_E0lOb1h6qtmflUyok4L06TgY",
"role": "tool",
"name": "SearchInternet",
"content": "tool content",
},
]
tokens = token_counter(model="gpt-3.5-turbo", messages=messages)
print(f"tokens: {tokens}")
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
# test_token_counter_normal_plus_function_calling()
@pytest.mark.parametrize(
"message_count_pair",
MESSAGES_TEXT,
)
def test_token_counter_textonly(message_count_pair):
counted_tokens = token_counter(
model="gpt-35-turbo", messages=[message_count_pair["message"]]
)
assert counted_tokens == message_count_pair["count"]
@pytest.mark.parametrize(
"message_count_pair",
MESSAGES_WITH_IMAGES,
)
def test_token_counter_with_images(message_count_pair):
counted_tokens = token_counter(
model="gpt-4o", messages=[message_count_pair["message"]]
)
assert counted_tokens == message_count_pair["count"]
@pytest.mark.parametrize(
"message_count_pair",
MESSAGES_WITH_TOOLS,
)
def test_token_counter_with_tools(message_count_pair):
counted_tokens = token_counter(
model="gpt-35-turbo",
messages=[message_count_pair["system_message"]],
tools=message_count_pair["tools"],
tool_choice=message_count_pair["tool_choice"],
)
expected_tokens = message_count_pair["count"]
diff = counted_tokens - expected_tokens
assert (
diff >= 0 and diff <= 3
), f"Expected {expected_tokens} tokens, got {counted_tokens}. Counted tokens is only allowed to be off by 3 in the over-counting direction."
def test_tokenizers():
try:
### test the openai, claude, cohere and llama2 tokenizers.
### The tokenizer value should be different for all
sample_text = "Hellö World, this is my input string! My name is ishaan CTO"
# openai tokenizer
openai_tokens = token_counter(model="gpt-3.5-turbo", text=sample_text)
# claude tokenizer
claude_tokens = token_counter(
model="claude-3-5-haiku-20241022", text=sample_text
)
# cohere tokenizer
cohere_tokens = token_counter(model="command-nightly", text=sample_text)
# llama2 tokenizer
llama2_tokens = token_counter(
model="meta-llama/Llama-2-7b-chat", text=sample_text
)
# llama3 tokenizer (also testing custom tokenizer)
llama3_tokens_1 = token_counter(
model="meta-llama/llama-3-70b-instruct", text=sample_text
)
llama3_tokenizer = create_pretrained_tokenizer("Xenova/llama-3-tokenizer")
llama3_tokens_2 = token_counter(
custom_tokenizer=llama3_tokenizer, text=sample_text
)
print(
f"openai tokens: {openai_tokens}; claude tokens: {claude_tokens}; cohere tokens: {cohere_tokens}; llama2 tokens: {llama2_tokens}; llama3 tokens: {llama3_tokens_1}"
)
# assert that all token values are different
assert (
openai_tokens != llama2_tokens != llama3_tokens_1
), "Token values are not different."
assert (
llama3_tokens_1 == llama3_tokens_2
), "Custom tokenizer is not being used! It has been configured to use the same tokenizer as the built in llama3 tokenizer and the results should be the same."
print("test tokenizer: It worked!")
except Exception as e:
pytest.fail(f"An exception occured: {e}")
# test_tokenizers()
def test_encoding_and_decoding():
try:
sample_text = "Hellö World, this is my input string!"
# openai encoding + decoding
openai_tokens = encode(model="gpt-3.5-turbo", text=sample_text)
openai_text = decode(model="gpt-3.5-turbo", tokens=openai_tokens)
assert openai_text == sample_text
# claude encoding + decoding
claude_tokens = encode(model="claude-3-5-haiku-20241022", text=sample_text)
claude_text = decode(model="claude-3-5-haiku-20241022", tokens=claude_tokens)
assert claude_text == sample_text
# cohere encoding + decoding
cohere_tokens = encode(model="command-nightly", text=sample_text)
cohere_text = decode(model="command-nightly", tokens=cohere_tokens)
assert cohere_text == sample_text
# llama2 encoding + decoding
llama2_tokens = encode(model="meta-llama/Llama-2-7b-chat", text=sample_text)
llama2_text = decode(
model="meta-llama/Llama-2-7b-chat", tokens=llama2_tokens.ids
)
assert llama2_text == sample_text
except Exception as e:
pytest.fail(f"An exception occured: {e}\n{traceback.format_exc()}")
# test_encoding_and_decoding()
def test_gpt_vision_token_counting():
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
],
}
]
tokens = token_counter(model="gpt-4-vision-preview", messages=messages)
print(f"tokens: {tokens}")
# test_gpt_vision_token_counting()
@pytest.mark.parametrize(
"model",
[
"gpt-4-vision-preview",
"gpt-4o",
"claude-3-opus-20240229",
"command-nightly",
"mistral/mistral-tiny",
],
)
def test_load_test_token_counter(model):
"""
Token count large prompt 100 times.
Assert time taken is < 1.5s.
"""
import tiktoken
messages = [{"role": "user", "content": text}] * 10
start_time = time.time()
for _ in range(10):
_ = token_counter(model=model, messages=messages)
# enc.encode("".join(m["content"] for m in messages))
end_time = time.time()
total_time = end_time - start_time
print("model={}, total test time={}".format(model, total_time))
assert total_time < 10, f"Total encoding time > 10s, {total_time}"
def test_openai_token_with_image_and_text():
model = "gpt-4o"
full_request = {
"model": "gpt-4o",
"tools": [
{
"type": "function",
"function": {
"name": "json",
"parameters": {
"type": "object",
"required": ["clause"],
"properties": {"clause": {"type": "string"}},
},
"description": "Respond with a JSON object.",
},
}
],
"logprobs": False,
"messages": [
{
"role": "user",
"content": [
{
"text": "\n Just some long text, long long text, and you know it will be longer than 7 tokens definetly.",
"type": "text",
}
],
}
],
"tool_choice": {"type": "function", "function": {"name": "json"}},
"exclude_models": [],
"disable_fallback": False,
"exclude_providers": [],
}
messages = full_request.get("messages", [])
token_count = token_counter(model=model, messages=messages)
print(token_count)
@pytest.mark.parametrize(
"model, base_model, input_tokens, user_max_tokens, expected_value",
[
("random-model", "random-model", 1024, 1024, 1024),
("command", "command", 1000000, None, None), # model max = 4096
("command", "command", 4000, 256, 96), # model max = 4096
("command", "command", 4000, 10, 10), # model max = 4096
("gpt-3.5-turbo", "gpt-3.5-turbo", 4000, 5000, 4096), # model max output = 4096
],
)
def test_get_modified_max_tokens(
model, base_model, input_tokens, user_max_tokens, expected_value
):
"""
- Test when max_output is not known => expect user_max_tokens
- Test when max_output == max_input,
- input > max_output, no max_tokens => expect None
- input + max_tokens > max_output => expect remainder
- input + max_tokens < max_output => expect max_tokens
- Test when max_tokens > max_output => expect max_output
"""
args = locals()
import litellm
litellm.token_counter = MagicMock()
def _mock_token_counter(*args, **kwargs):
return input_tokens
litellm.token_counter.side_effect = _mock_token_counter
print(f"_mock_token_counter: {_mock_token_counter()}")
messages = [{"role": "user", "content": "Hello world!"}]
calculated_value = get_modified_max_tokens(
model=model,
base_model=base_model,
messages=messages,
user_max_tokens=user_max_tokens,
buffer_perc=0,
buffer_num=0,
)
if expected_value is None:
assert calculated_value is None
else:
assert (
calculated_value == expected_value
), "Got={}, Expected={}, Params={}".format(
calculated_value, expected_value, args
)
def test_empty_tools():
messages = [{"role": "user", "content": "hey, how's it going?", "tool_calls": None}]
result = token_counter(
messages=messages,
)
print(result)
def test_gpt_4o_token_counter():
with patch.object(
litellm.utils, "openai_token_counter", new=MagicMock()
) as mock_client:
token_counter(
model="gpt-4o-2024-05-13", messages=[{"role": "user", "content": "Hey!"}]
)
mock_client.assert_called()
@pytest.mark.parametrize(
"img_url",
[
"https://blog.purpureus.net/assets/blog/personal_key_rotation/simplified-asset-graph.jpg",
"",
],
)
def test_img_url_token_counter(img_url):
from litellm.litellm_core_utils.token_counter import get_image_dimensions
width, height = get_image_dimensions(data=img_url)
print(width, height)
assert width is not None
assert height is not None
def test_token_encode_disallowed_special():
encode(model="gpt-3.5-turbo", text="Hello, world! <|endoftext|>")
import unittest
from unittest.mock import patch, MagicMock
from litellm.utils import encoding, _select_tokenizer_helper, claude_json_str
class TestTokenizerSelection(unittest.TestCase):
@patch("litellm.utils.Tokenizer.from_pretrained")
def test_llama3_tokenizer_api_failure(self, mock_from_pretrained):
# Setup mock to raise an error
mock_from_pretrained.side_effect = Exception("Failed to load tokenizer")
# Test with llama-3 model
result = _select_tokenizer_helper("llama-3-7b")
# Verify the attempt to load Llama-3 tokenizer
mock_from_pretrained.assert_called_once_with("Xenova/llama-3-tokenizer")
# Verify fallback to OpenAI tokenizer
self.assertEqual(result["type"], "openai_tokenizer")
self.assertEqual(result["tokenizer"], encoding)
@patch("litellm.utils.Tokenizer.from_pretrained")
def test_cohere_tokenizer_api_failure(self, mock_from_pretrained):
# Setup mock to raise an error
mock_from_pretrained.side_effect = Exception("Failed to load tokenizer")
# Add Cohere model to the list for testing
litellm.cohere_models = ["command-r-v1"]
# Test with Cohere model
result = _select_tokenizer_helper("command-r-v1")
# Verify the attempt to load Cohere tokenizer
mock_from_pretrained.assert_called_once_with(
"Xenova/c4ai-command-r-v01-tokenizer"
)
# Verify fallback to OpenAI tokenizer
self.assertEqual(result["type"], "openai_tokenizer")
self.assertEqual(result["tokenizer"], encoding)
@patch("litellm.utils.Tokenizer.from_str")
def test_claude_tokenizer_api_failure(self, mock_from_str):
# Setup mock to raise an error
mock_from_str.side_effect = Exception("Failed to load tokenizer")
# Add Claude model to the list for testing
litellm.anthropic_models = ["claude-2"]
# Test with Claude model
result = _select_tokenizer_helper("claude-2")
# Verify the attempt to load Claude tokenizer
mock_from_str.assert_called_once_with(claude_json_str)
# Verify fallback to OpenAI tokenizer
self.assertEqual(result["type"], "openai_tokenizer")
self.assertEqual(result["tokenizer"], encoding)
@patch("litellm.utils.Tokenizer.from_pretrained")
def test_llama2_tokenizer_api_failure(self, mock_from_pretrained):
# Setup mock to raise an error
mock_from_pretrained.side_effect = Exception("Failed to load tokenizer")
# Test with Llama-2 model
result = _select_tokenizer_helper("llama-2-7b")
# Verify the attempt to load Llama-2 tokenizer
mock_from_pretrained.assert_called_once_with(
"hf-internal-testing/llama-tokenizer"
)
# Verify fallback to OpenAI tokenizer
self.assertEqual(result["type"], "openai_tokenizer")
self.assertEqual(result["tokenizer"], encoding)
@patch("litellm.utils._return_huggingface_tokenizer")
def test_disable_hf_tokenizer_download(self, mock_return_huggingface_tokenizer):
# Use pytest.MonkeyPatch() directly instead of fixture
monkeypatch = pytest.MonkeyPatch()
monkeypatch.setattr(litellm, "disable_hf_tokenizer_download", True)
result = _select_tokenizer_helper("grok-32r22r")
mock_return_huggingface_tokenizer.assert_not_called()
assert result["type"] == "openai_tokenizer"
assert result["tokenizer"] == encoding
@pytest.mark.parametrize(
"model",
[
"gpt-4o",
"claude-3-opus-20240229",
],
)
@pytest.mark.parametrize(
"messages",
[
[
{
"role": "user",
"content": [
{
"type": "text",
"text": "These are some sample images from a movie. Based on these images, what do you think the tone of the movie is?",
},
{
"type": "text",
"image_url": {
"url": "https://gratisography.com/wp-content/uploads/2024/11/gratisography-augmented-reality-800x525.jpg",
"detail": "high",
},
},
],
}
],
[
{
"role": "user",
"content": [
{
"type": "text",
"text": "These are some sample images from a movie. Based on these images, what do you think the tone of the movie is?",
},
{
"type": "text",
"image_url": {
"url": "https://gratisography.com/wp-content/uploads/2024/11/gratisography-augmented-reality-800x525.jpg",
"detail": "high",
},
},
],
}
],
],
)
def test_bad_input_token_counter(model, messages):
"""
Safely handle bad input for token counter.
"""
token_counter(
model=model,
messages=messages,
default_token_count=1000,
)