mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* docs: cleanup doc * feat(bedrock/): initial commit adding bedrock/converse_like/<model> route support allows routing to a converse like endpoint Resolves https://github.com/BerriAI/litellm/issues/8085 * feat(bedrock/chat/converse_transformation.py): make converse config base config compatible enables new 'converse_like' route * feat(converse_transformation.py): enables using the proxy with converse like api endpoint Resolves https://github.com/BerriAI/litellm/issues/8085
403 lines
12 KiB
Python
403 lines
12 KiB
Python
# What is this?
|
|
## Unit tests for ProxyConfig class
|
|
|
|
|
|
import os
|
|
import sys
|
|
import traceback
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import io
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
from typing import Literal
|
|
|
|
import pytest
|
|
from pydantic import BaseModel, ConfigDict
|
|
|
|
import litellm
|
|
from litellm.proxy.common_utils.encrypt_decrypt_utils import encrypt_value
|
|
from litellm.proxy.proxy_server import ProxyConfig
|
|
from litellm.proxy.utils import DualCache, ProxyLogging
|
|
from litellm.types.router import Deployment, LiteLLM_Params, ModelInfo
|
|
|
|
|
|
class DBModel(BaseModel):
|
|
model_id: str
|
|
model_name: str
|
|
model_info: dict
|
|
litellm_params: dict
|
|
|
|
model_config = ConfigDict(protected_namespaces=())
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_delete_deployment():
|
|
"""
|
|
- Ensure the global llm router is not being reset
|
|
- Ensure invalid model is deleted
|
|
- Check if model id != model_info["id"], the model_info["id"] is picked
|
|
"""
|
|
import base64
|
|
|
|
litellm_params = LiteLLM_Params(
|
|
model="azure/chatgpt-v-2",
|
|
api_key=os.getenv("AZURE_API_KEY"),
|
|
api_base=os.getenv("AZURE_API_BASE"),
|
|
api_version=os.getenv("AZURE_API_VERSION"),
|
|
)
|
|
encrypted_litellm_params = litellm_params.dict(exclude_none=True)
|
|
|
|
master_key = "sk-1234"
|
|
|
|
setattr(litellm.proxy.proxy_server, "master_key", master_key)
|
|
|
|
for k, v in encrypted_litellm_params.items():
|
|
if isinstance(v, str):
|
|
encrypted_value = encrypt_value(v, master_key)
|
|
encrypted_litellm_params[k] = base64.b64encode(encrypted_value).decode(
|
|
"utf-8"
|
|
)
|
|
|
|
deployment = Deployment(model_name="gpt-3.5-turbo", litellm_params=litellm_params)
|
|
deployment_2 = Deployment(
|
|
model_name="gpt-3.5-turbo-2", litellm_params=litellm_params
|
|
)
|
|
|
|
llm_router = litellm.Router(
|
|
model_list=[
|
|
deployment.to_json(exclude_none=True),
|
|
deployment_2.to_json(exclude_none=True),
|
|
]
|
|
)
|
|
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
|
|
print(f"llm_router: {llm_router}")
|
|
|
|
pc = ProxyConfig()
|
|
|
|
db_model = DBModel(
|
|
model_id=deployment.model_info.id,
|
|
model_name="gpt-3.5-turbo",
|
|
litellm_params=encrypted_litellm_params,
|
|
model_info={"id": deployment.model_info.id},
|
|
)
|
|
|
|
db_models = [db_model]
|
|
deleted_deployments = await pc._delete_deployment(db_models=db_models)
|
|
|
|
assert deleted_deployments == 1
|
|
assert len(llm_router.model_list) == 1
|
|
|
|
"""
|
|
Scenario 2 - if model id != model_info["id"]
|
|
"""
|
|
|
|
llm_router = litellm.Router(
|
|
model_list=[
|
|
deployment.to_json(exclude_none=True),
|
|
deployment_2.to_json(exclude_none=True),
|
|
]
|
|
)
|
|
print(f"llm_router: {llm_router}")
|
|
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
|
|
pc = ProxyConfig()
|
|
|
|
db_model = DBModel(
|
|
model_id=deployment.model_info.id,
|
|
model_name="gpt-3.5-turbo",
|
|
litellm_params=encrypted_litellm_params,
|
|
model_info={"id": deployment.model_info.id},
|
|
)
|
|
|
|
db_models = [db_model]
|
|
deleted_deployments = await pc._delete_deployment(db_models=db_models)
|
|
|
|
assert deleted_deployments == 1
|
|
assert len(llm_router.model_list) == 1
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_add_existing_deployment():
|
|
"""
|
|
- Only add new models
|
|
- don't re-add existing models
|
|
"""
|
|
import base64
|
|
|
|
litellm_params = LiteLLM_Params(
|
|
model="gpt-3.5-turbo",
|
|
api_key=os.getenv("AZURE_API_KEY"),
|
|
api_base=os.getenv("AZURE_API_BASE"),
|
|
api_version=os.getenv("AZURE_API_VERSION"),
|
|
)
|
|
deployment = Deployment(model_name="gpt-3.5-turbo", litellm_params=litellm_params)
|
|
deployment_2 = Deployment(
|
|
model_name="gpt-3.5-turbo-2", litellm_params=litellm_params
|
|
)
|
|
|
|
llm_router = litellm.Router(
|
|
model_list=[
|
|
deployment.to_json(exclude_none=True),
|
|
deployment_2.to_json(exclude_none=True),
|
|
]
|
|
)
|
|
|
|
init_len_list = len(llm_router.model_list)
|
|
print(f"llm_router: {llm_router}")
|
|
master_key = "sk-1234"
|
|
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
|
|
setattr(litellm.proxy.proxy_server, "master_key", master_key)
|
|
pc = ProxyConfig()
|
|
|
|
encrypted_litellm_params = litellm_params.dict(exclude_none=True)
|
|
|
|
for k, v in encrypted_litellm_params.items():
|
|
if isinstance(v, str):
|
|
encrypted_value = encrypt_value(v, master_key)
|
|
encrypted_litellm_params[k] = base64.b64encode(encrypted_value).decode(
|
|
"utf-8"
|
|
)
|
|
db_model = DBModel(
|
|
model_id=deployment.model_info.id,
|
|
model_name="gpt-3.5-turbo",
|
|
litellm_params=encrypted_litellm_params,
|
|
model_info={"id": deployment.model_info.id},
|
|
)
|
|
|
|
db_models = [db_model]
|
|
num_added = pc._add_deployment(db_models=db_models)
|
|
|
|
assert init_len_list == len(llm_router.model_list)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_db_error_new_model_check():
|
|
"""
|
|
- if error in db, don't delete existing models
|
|
|
|
Relevant issue: https://github.com/BerriAI/litellm/blob/ddfe687b13e9f31db2fb2322887804e3d01dd467/litellm/proxy/proxy_server.py#L2461
|
|
"""
|
|
import base64
|
|
|
|
litellm_params = LiteLLM_Params(
|
|
model="gpt-3.5-turbo",
|
|
api_key=os.getenv("AZURE_API_KEY"),
|
|
api_base=os.getenv("AZURE_API_BASE"),
|
|
api_version=os.getenv("AZURE_API_VERSION"),
|
|
)
|
|
deployment = Deployment(model_name="gpt-3.5-turbo", litellm_params=litellm_params)
|
|
deployment_2 = Deployment(
|
|
model_name="gpt-3.5-turbo-2", litellm_params=litellm_params
|
|
)
|
|
|
|
llm_router = litellm.Router(
|
|
model_list=[
|
|
deployment.to_json(exclude_none=True),
|
|
deployment_2.to_json(exclude_none=True),
|
|
]
|
|
)
|
|
|
|
init_len_list = len(llm_router.model_list)
|
|
print(f"llm_router: {llm_router}")
|
|
master_key = "sk-1234"
|
|
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
|
|
setattr(litellm.proxy.proxy_server, "master_key", master_key)
|
|
pc = ProxyConfig()
|
|
|
|
encrypted_litellm_params = litellm_params.dict(exclude_none=True)
|
|
|
|
for k, v in encrypted_litellm_params.items():
|
|
if isinstance(v, str):
|
|
encrypted_value = encrypt_value(v, master_key)
|
|
encrypted_litellm_params[k] = base64.b64encode(encrypted_value).decode(
|
|
"utf-8"
|
|
)
|
|
db_model = DBModel(
|
|
model_id=deployment.model_info.id,
|
|
model_name="gpt-3.5-turbo",
|
|
litellm_params=encrypted_litellm_params,
|
|
model_info={"id": deployment.model_info.id},
|
|
)
|
|
|
|
db_models = []
|
|
deleted_deployments = await pc._delete_deployment(db_models=db_models)
|
|
assert deleted_deployments == 0
|
|
|
|
assert init_len_list == len(llm_router.model_list)
|
|
|
|
|
|
litellm_params = LiteLLM_Params(
|
|
model="azure/chatgpt-v-2",
|
|
api_key=os.getenv("AZURE_API_KEY"),
|
|
api_base=os.getenv("AZURE_API_BASE"),
|
|
api_version=os.getenv("AZURE_API_VERSION"),
|
|
)
|
|
|
|
deployment = Deployment(model_name="gpt-3.5-turbo", litellm_params=litellm_params)
|
|
deployment_2 = Deployment(model_name="gpt-3.5-turbo-2", litellm_params=litellm_params)
|
|
|
|
|
|
def _create_model_list(flag_value: Literal[0, 1], master_key: str):
|
|
"""
|
|
0 - empty list
|
|
1 - list with an element
|
|
"""
|
|
import base64
|
|
|
|
new_litellm_params = LiteLLM_Params(
|
|
model="azure/chatgpt-v-2-3",
|
|
api_key=os.getenv("AZURE_API_KEY"),
|
|
api_base=os.getenv("AZURE_API_BASE"),
|
|
api_version=os.getenv("AZURE_API_VERSION"),
|
|
)
|
|
|
|
encrypted_litellm_params = new_litellm_params.dict(exclude_none=True)
|
|
|
|
for k, v in encrypted_litellm_params.items():
|
|
if isinstance(v, str):
|
|
encrypted_value = encrypt_value(v, master_key)
|
|
encrypted_litellm_params[k] = base64.b64encode(encrypted_value).decode(
|
|
"utf-8"
|
|
)
|
|
db_model = DBModel(
|
|
model_id="12345",
|
|
model_name="gpt-3.5-turbo",
|
|
litellm_params=encrypted_litellm_params,
|
|
model_info={"id": "12345"},
|
|
)
|
|
|
|
db_models = [db_model]
|
|
|
|
if flag_value == 0:
|
|
return []
|
|
elif flag_value == 1:
|
|
return db_models
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"llm_router",
|
|
[
|
|
None,
|
|
litellm.Router(),
|
|
litellm.Router(
|
|
model_list=[
|
|
deployment.to_json(exclude_none=True),
|
|
deployment_2.to_json(exclude_none=True),
|
|
]
|
|
),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"model_list_flag_value",
|
|
[0, 1],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_add_and_delete_deployments(llm_router, model_list_flag_value):
|
|
"""
|
|
Test add + delete logic in 3 scenarios
|
|
- when router is none
|
|
- when router is init but empty
|
|
- when router is init and not empty
|
|
"""
|
|
|
|
master_key = "sk-1234"
|
|
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
|
|
setattr(litellm.proxy.proxy_server, "master_key", master_key)
|
|
pc = ProxyConfig()
|
|
pl = ProxyLogging(DualCache())
|
|
|
|
async def _monkey_patch_get_config(*args, **kwargs):
|
|
print(f"ENTERS MP GET CONFIG")
|
|
if llm_router is None:
|
|
return {}
|
|
else:
|
|
print(f"llm_router.model_list: {llm_router.model_list}")
|
|
return {"model_list": llm_router.model_list}
|
|
|
|
pc.get_config = _monkey_patch_get_config
|
|
|
|
model_list = _create_model_list(
|
|
flag_value=model_list_flag_value, master_key=master_key
|
|
)
|
|
|
|
if llm_router is None:
|
|
prev_llm_router_val = None
|
|
else:
|
|
prev_llm_router_val = len(llm_router.model_list)
|
|
|
|
await pc._update_llm_router(new_models=model_list, proxy_logging_obj=pl)
|
|
|
|
llm_router = getattr(litellm.proxy.proxy_server, "llm_router")
|
|
|
|
if model_list_flag_value == 0:
|
|
if prev_llm_router_val is None:
|
|
assert prev_llm_router_val == llm_router
|
|
else:
|
|
assert prev_llm_router_val == len(llm_router.model_list)
|
|
else:
|
|
if prev_llm_router_val is None:
|
|
assert len(llm_router.model_list) == len(model_list)
|
|
else:
|
|
assert len(llm_router.model_list) == len(model_list) + prev_llm_router_val
|
|
|
|
|
|
from litellm import LITELLM_CHAT_PROVIDERS, LlmProviders
|
|
from litellm.utils import ProviderConfigManager
|
|
from litellm.llms.base_llm.chat.transformation import BaseConfig
|
|
|
|
|
|
def _check_provider_config(config: BaseConfig, provider: LlmProviders):
|
|
assert isinstance(
|
|
config,
|
|
BaseConfig,
|
|
), f"Provider {provider} is not a subclass of BaseConfig. Got={config}"
|
|
|
|
if (
|
|
provider != litellm.LlmProviders.OPENAI
|
|
and provider != litellm.LlmProviders.OPENAI_LIKE
|
|
and provider != litellm.LlmProviders.CUSTOM_OPENAI
|
|
):
|
|
assert (
|
|
config.__class__.__name__ != "OpenAIGPTConfig"
|
|
), f"Provider {provider} is an instance of OpenAIGPTConfig"
|
|
|
|
assert "_abc_impl" not in config.get_config(), f"Provider {provider} has _abc_impl"
|
|
|
|
|
|
def test_provider_config_manager_bedrock_converse_like():
|
|
from litellm.llms.bedrock.chat.converse_transformation import AmazonConverseConfig
|
|
|
|
config = ProviderConfigManager.get_provider_chat_config(
|
|
model="bedrock/converse_like/us.amazon.nova-pro-v1:0",
|
|
provider=LlmProviders.BEDROCK,
|
|
)
|
|
print(f"config: {config}")
|
|
assert isinstance(config, AmazonConverseConfig)
|
|
|
|
|
|
# def test_provider_config_manager():
|
|
# from litellm.llms.openai.chat.gpt_transformation import OpenAIGPTConfig
|
|
|
|
# for provider in LITELLM_CHAT_PROVIDERS:
|
|
# if (
|
|
# provider == LlmProviders.VERTEX_AI
|
|
# or provider == LlmProviders.VERTEX_AI_BETA
|
|
# or provider == LlmProviders.BEDROCK
|
|
# or provider == LlmProviders.BASETEN
|
|
# or provider == LlmProviders.PETALS
|
|
# or provider == LlmProviders.SAGEMAKER
|
|
# or provider == LlmProviders.SAGEMAKER_CHAT
|
|
# or provider == LlmProviders.VLLM
|
|
# or provider == LlmProviders.OLLAMA
|
|
# ):
|
|
# continue
|
|
|
|
# config = ProviderConfigManager.get_provider_chat_config(
|
|
# model="gpt-3.5-turbo", provider=LlmProviders(provider)
|
|
# )
|
|
# _check_provider_config(config, provider)
|