mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
* build(model_prices_and_context_window.json): add vertex ai gemini-2.5-flash pricing * build(model_prices_and_context_window.json): add gemini reasoning token pricing * fix(vertex_and_google_ai_studio_gemini.py): support counting thinking tokens for gemini allows accurate cost calc * fix(utils.py): add reasoning token cost calc to generic cost calc ensures gemini-2.5-flash cost calculation is accurate * build(model_prices_and_context_window.json): mark gemini-2.5-flash as 'supports_reasoning' * feat(gemini/): support 'thinking' + 'reasoning_effort' params + new unit tests allow controlling thinking effort for gemini-2.5-flash models * test: update unit testing * feat(vertex_and_google_ai_studio_gemini.py): return reasoning content if given in gemini response * test: update model name * fix: fix ruff check * test(test_spend_management_endpoints.py): update tests to be less sensitive to new keys / updates to usage object * fix(vertex_and_google_ai_studio_gemini.py): fix translation
539 lines
20 KiB
Python
539 lines
20 KiB
Python
from typing import List, Literal
|
||
|
||
ROUTER_MAX_FALLBACKS = 5
|
||
DEFAULT_BATCH_SIZE = 512
|
||
DEFAULT_FLUSH_INTERVAL_SECONDS = 5
|
||
DEFAULT_MAX_RETRIES = 2
|
||
DEFAULT_MAX_RECURSE_DEPTH = 10
|
||
DEFAULT_FAILURE_THRESHOLD_PERCENT = (
|
||
0.5 # default cooldown a deployment if 50% of requests fail in a given minute
|
||
)
|
||
DEFAULT_MAX_TOKENS = 4096
|
||
DEFAULT_ALLOWED_FAILS = 3
|
||
DEFAULT_REDIS_SYNC_INTERVAL = 1
|
||
DEFAULT_COOLDOWN_TIME_SECONDS = 5
|
||
DEFAULT_REPLICATE_POLLING_RETRIES = 5
|
||
DEFAULT_REPLICATE_POLLING_DELAY_SECONDS = 1
|
||
DEFAULT_IMAGE_TOKEN_COUNT = 250
|
||
DEFAULT_IMAGE_WIDTH = 300
|
||
DEFAULT_IMAGE_HEIGHT = 300
|
||
DEFAULT_MAX_TOKENS = 256 # used when providers need a default
|
||
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = 1024 # 1MB = 1024KB
|
||
SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD = 1000 # Minimum number of requests to consider "reasonable traffic". Used for single-deployment cooldown logic.
|
||
|
||
DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET = 1024
|
||
DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET = 2048
|
||
DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET = 4096
|
||
|
||
########## Networking constants ##############################################################
|
||
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour
|
||
|
||
########### v2 Architecture constants for managing writing updates to the database ###########
|
||
REDIS_UPDATE_BUFFER_KEY = "litellm_spend_update_buffer"
|
||
REDIS_DAILY_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_spend_update_buffer"
|
||
REDIS_DAILY_TEAM_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_team_spend_update_buffer"
|
||
REDIS_DAILY_TAG_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_tag_spend_update_buffer"
|
||
MAX_REDIS_BUFFER_DEQUEUE_COUNT = 100
|
||
MAX_SIZE_IN_MEMORY_QUEUE = 10000
|
||
MAX_IN_MEMORY_QUEUE_FLUSH_COUNT = 1000
|
||
###############################################################################################
|
||
MINIMUM_PROMPT_CACHE_TOKEN_COUNT = (
|
||
1024 # minimum number of tokens to cache a prompt by Anthropic
|
||
)
|
||
DEFAULT_TRIM_RATIO = 0.75 # default ratio of tokens to trim from the end of a prompt
|
||
HOURS_IN_A_DAY = 24
|
||
DAYS_IN_A_WEEK = 7
|
||
DAYS_IN_A_MONTH = 28
|
||
DAYS_IN_A_YEAR = 365
|
||
REPLICATE_MODEL_NAME_WITH_ID_LENGTH = 64
|
||
#### TOKEN COUNTING ####
|
||
FUNCTION_DEFINITION_TOKEN_COUNT = 9
|
||
SYSTEM_MESSAGE_TOKEN_COUNT = 4
|
||
TOOL_CHOICE_OBJECT_TOKEN_COUNT = 4
|
||
DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT = 10
|
||
DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT = 20
|
||
MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES = 768
|
||
MAX_LONG_SIDE_FOR_IMAGE_HIGH_RES = 2000
|
||
MAX_TILE_WIDTH = 512
|
||
MAX_TILE_HEIGHT = 512
|
||
OPENAI_FILE_SEARCH_COST_PER_1K_CALLS = 2.5 / 1000
|
||
MIN_NON_ZERO_TEMPERATURE = 0.0001
|
||
#### RELIABILITY ####
|
||
REPEATED_STREAMING_CHUNK_LIMIT = 100 # catch if model starts looping the same chunk while streaming. Uses high default to prevent false positives.
|
||
DEFAULT_MAX_LRU_CACHE_SIZE = 16
|
||
INITIAL_RETRY_DELAY = 0.5
|
||
MAX_RETRY_DELAY = 8.0
|
||
JITTER = 0.75
|
||
DEFAULT_IN_MEMORY_TTL = 5 # default time to live for the in-memory cache
|
||
DEFAULT_POLLING_INTERVAL = 0.03 # default polling interval for the scheduler
|
||
AZURE_OPERATION_POLLING_TIMEOUT = 120
|
||
REDIS_SOCKET_TIMEOUT = 0.1
|
||
REDIS_CONNECTION_POOL_TIMEOUT = 5
|
||
NON_LLM_CONNECTION_TIMEOUT = 15 # timeout for adjacent services (e.g. jwt auth)
|
||
MAX_EXCEPTION_MESSAGE_LENGTH = 2000
|
||
BEDROCK_MAX_POLICY_SIZE = 75
|
||
REPLICATE_POLLING_DELAY_SECONDS = 0.5
|
||
DEFAULT_ANTHROPIC_CHAT_MAX_TOKENS = 4096
|
||
TOGETHER_AI_4_B = 4
|
||
TOGETHER_AI_8_B = 8
|
||
TOGETHER_AI_21_B = 21
|
||
TOGETHER_AI_41_B = 41
|
||
TOGETHER_AI_80_B = 80
|
||
TOGETHER_AI_110_B = 110
|
||
TOGETHER_AI_EMBEDDING_150_M = 150
|
||
TOGETHER_AI_EMBEDDING_350_M = 350
|
||
QDRANT_SCALAR_QUANTILE = 0.99
|
||
QDRANT_VECTOR_SIZE = 1536
|
||
CACHED_STREAMING_CHUNK_DELAY = 0.02
|
||
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = 512
|
||
DEFAULT_MAX_TOKENS_FOR_TRITON = 2000
|
||
#### Networking settings ####
|
||
request_timeout: float = 6000 # time in seconds
|
||
STREAM_SSE_DONE_STRING: str = "[DONE]"
|
||
### SPEND TRACKING ###
|
||
DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND = 0.001400 # price per second for a100 80GB
|
||
FIREWORKS_AI_56_B_MOE = 56
|
||
FIREWORKS_AI_176_B_MOE = 176
|
||
FIREWORKS_AI_16_B = 16
|
||
FIREWORKS_AI_80_B = 80
|
||
|
||
LITELLM_CHAT_PROVIDERS = [
|
||
"openai",
|
||
"openai_like",
|
||
"xai",
|
||
"custom_openai",
|
||
"text-completion-openai",
|
||
"cohere",
|
||
"cohere_chat",
|
||
"clarifai",
|
||
"anthropic",
|
||
"anthropic_text",
|
||
"replicate",
|
||
"huggingface",
|
||
"together_ai",
|
||
"openrouter",
|
||
"vertex_ai",
|
||
"vertex_ai_beta",
|
||
"gemini",
|
||
"ai21",
|
||
"baseten",
|
||
"azure",
|
||
"azure_text",
|
||
"azure_ai",
|
||
"sagemaker",
|
||
"sagemaker_chat",
|
||
"bedrock",
|
||
"vllm",
|
||
"nlp_cloud",
|
||
"petals",
|
||
"oobabooga",
|
||
"ollama",
|
||
"ollama_chat",
|
||
"deepinfra",
|
||
"perplexity",
|
||
"mistral",
|
||
"groq",
|
||
"nvidia_nim",
|
||
"cerebras",
|
||
"ai21_chat",
|
||
"volcengine",
|
||
"codestral",
|
||
"text-completion-codestral",
|
||
"deepseek",
|
||
"sambanova",
|
||
"maritalk",
|
||
"cloudflare",
|
||
"fireworks_ai",
|
||
"friendliai",
|
||
"watsonx",
|
||
"watsonx_text",
|
||
"triton",
|
||
"predibase",
|
||
"databricks",
|
||
"empower",
|
||
"github",
|
||
"custom",
|
||
"litellm_proxy",
|
||
"hosted_vllm",
|
||
"lm_studio",
|
||
"galadriel",
|
||
]
|
||
|
||
|
||
OPENAI_CHAT_COMPLETION_PARAMS = [
|
||
"functions",
|
||
"function_call",
|
||
"temperature",
|
||
"temperature",
|
||
"top_p",
|
||
"n",
|
||
"stream",
|
||
"stream_options",
|
||
"stop",
|
||
"max_completion_tokens",
|
||
"modalities",
|
||
"prediction",
|
||
"audio",
|
||
"max_tokens",
|
||
"presence_penalty",
|
||
"frequency_penalty",
|
||
"logit_bias",
|
||
"user",
|
||
"request_timeout",
|
||
"api_base",
|
||
"api_version",
|
||
"api_key",
|
||
"deployment_id",
|
||
"organization",
|
||
"base_url",
|
||
"default_headers",
|
||
"timeout",
|
||
"response_format",
|
||
"seed",
|
||
"tools",
|
||
"tool_choice",
|
||
"max_retries",
|
||
"parallel_tool_calls",
|
||
"logprobs",
|
||
"top_logprobs",
|
||
"reasoning_effort",
|
||
"extra_headers",
|
||
"thinking",
|
||
]
|
||
|
||
openai_compatible_endpoints: List = [
|
||
"api.perplexity.ai",
|
||
"api.endpoints.anyscale.com/v1",
|
||
"api.deepinfra.com/v1/openai",
|
||
"api.mistral.ai/v1",
|
||
"codestral.mistral.ai/v1/chat/completions",
|
||
"codestral.mistral.ai/v1/fim/completions",
|
||
"api.groq.com/openai/v1",
|
||
"https://integrate.api.nvidia.com/v1",
|
||
"api.deepseek.com/v1",
|
||
"api.together.xyz/v1",
|
||
"app.empower.dev/api/v1",
|
||
"https://api.friendli.ai/serverless/v1",
|
||
"api.sambanova.ai/v1",
|
||
"api.x.ai/v1",
|
||
"api.galadriel.ai/v1",
|
||
]
|
||
|
||
|
||
openai_compatible_providers: List = [
|
||
"anyscale",
|
||
"mistral",
|
||
"groq",
|
||
"nvidia_nim",
|
||
"cerebras",
|
||
"sambanova",
|
||
"ai21_chat",
|
||
"ai21",
|
||
"volcengine",
|
||
"codestral",
|
||
"deepseek",
|
||
"deepinfra",
|
||
"perplexity",
|
||
"xinference",
|
||
"xai",
|
||
"together_ai",
|
||
"fireworks_ai",
|
||
"empower",
|
||
"friendliai",
|
||
"azure_ai",
|
||
"github",
|
||
"litellm_proxy",
|
||
"hosted_vllm",
|
||
"lm_studio",
|
||
"galadriel",
|
||
]
|
||
openai_text_completion_compatible_providers: List = (
|
||
[ # providers that support `/v1/completions`
|
||
"together_ai",
|
||
"fireworks_ai",
|
||
"hosted_vllm",
|
||
]
|
||
)
|
||
_openai_like_providers: List = [
|
||
"predibase",
|
||
"databricks",
|
||
"watsonx",
|
||
] # private helper. similar to openai but require some custom auth / endpoint handling, so can't use the openai sdk
|
||
# well supported replicate llms
|
||
replicate_models: List = [
|
||
# llama replicate supported LLMs
|
||
"replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
|
||
"a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52",
|
||
"meta/codellama-13b:1c914d844307b0588599b8393480a3ba917b660c7e9dfae681542b5325f228db",
|
||
# Vicuna
|
||
"replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b",
|
||
"joehoover/instructblip-vicuna13b:c4c54e3c8c97cd50c2d2fec9be3b6065563ccf7d43787fb99f84151b867178fe",
|
||
# Flan T-5
|
||
"daanelson/flan-t5-large:ce962b3f6792a57074a601d3979db5839697add2e4e02696b3ced4c022d4767f",
|
||
# Others
|
||
"replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5",
|
||
"replit/replit-code-v1-3b:b84f4c074b807211cd75e3e8b1589b6399052125b4c27106e43d47189e8415ad",
|
||
]
|
||
|
||
clarifai_models: List = [
|
||
"clarifai/meta.Llama-3.Llama-3-8B-Instruct",
|
||
"clarifai/gcp.generate.gemma-1_1-7b-it",
|
||
"clarifai/mistralai.completion.mixtral-8x22B",
|
||
"clarifai/cohere.generate.command-r-plus",
|
||
"clarifai/databricks.drbx.dbrx-instruct",
|
||
"clarifai/mistralai.completion.mistral-large",
|
||
"clarifai/mistralai.completion.mistral-medium",
|
||
"clarifai/mistralai.completion.mistral-small",
|
||
"clarifai/mistralai.completion.mixtral-8x7B-Instruct-v0_1",
|
||
"clarifai/gcp.generate.gemma-2b-it",
|
||
"clarifai/gcp.generate.gemma-7b-it",
|
||
"clarifai/deci.decilm.deciLM-7B-instruct",
|
||
"clarifai/mistralai.completion.mistral-7B-Instruct",
|
||
"clarifai/gcp.generate.gemini-pro",
|
||
"clarifai/anthropic.completion.claude-v1",
|
||
"clarifai/anthropic.completion.claude-instant-1_2",
|
||
"clarifai/anthropic.completion.claude-instant",
|
||
"clarifai/anthropic.completion.claude-v2",
|
||
"clarifai/anthropic.completion.claude-2_1",
|
||
"clarifai/meta.Llama-2.codeLlama-70b-Python",
|
||
"clarifai/meta.Llama-2.codeLlama-70b-Instruct",
|
||
"clarifai/openai.completion.gpt-3_5-turbo-instruct",
|
||
"clarifai/meta.Llama-2.llama2-7b-chat",
|
||
"clarifai/meta.Llama-2.llama2-13b-chat",
|
||
"clarifai/meta.Llama-2.llama2-70b-chat",
|
||
"clarifai/openai.chat-completion.gpt-4-turbo",
|
||
"clarifai/microsoft.text-generation.phi-2",
|
||
"clarifai/meta.Llama-2.llama2-7b-chat-vllm",
|
||
"clarifai/upstage.solar.solar-10_7b-instruct",
|
||
"clarifai/openchat.openchat.openchat-3_5-1210",
|
||
"clarifai/togethercomputer.stripedHyena.stripedHyena-Nous-7B",
|
||
"clarifai/gcp.generate.text-bison",
|
||
"clarifai/meta.Llama-2.llamaGuard-7b",
|
||
"clarifai/fblgit.una-cybertron.una-cybertron-7b-v2",
|
||
"clarifai/openai.chat-completion.GPT-4",
|
||
"clarifai/openai.chat-completion.GPT-3_5-turbo",
|
||
"clarifai/ai21.complete.Jurassic2-Grande",
|
||
"clarifai/ai21.complete.Jurassic2-Grande-Instruct",
|
||
"clarifai/ai21.complete.Jurassic2-Jumbo-Instruct",
|
||
"clarifai/ai21.complete.Jurassic2-Jumbo",
|
||
"clarifai/ai21.complete.Jurassic2-Large",
|
||
"clarifai/cohere.generate.cohere-generate-command",
|
||
"clarifai/wizardlm.generate.wizardCoder-Python-34B",
|
||
"clarifai/wizardlm.generate.wizardLM-70B",
|
||
"clarifai/tiiuae.falcon.falcon-40b-instruct",
|
||
"clarifai/togethercomputer.RedPajama.RedPajama-INCITE-7B-Chat",
|
||
"clarifai/gcp.generate.code-gecko",
|
||
"clarifai/gcp.generate.code-bison",
|
||
"clarifai/mistralai.completion.mistral-7B-OpenOrca",
|
||
"clarifai/mistralai.completion.openHermes-2-mistral-7B",
|
||
"clarifai/wizardlm.generate.wizardLM-13B",
|
||
"clarifai/huggingface-research.zephyr.zephyr-7B-alpha",
|
||
"clarifai/wizardlm.generate.wizardCoder-15B",
|
||
"clarifai/microsoft.text-generation.phi-1_5",
|
||
"clarifai/databricks.Dolly-v2.dolly-v2-12b",
|
||
"clarifai/bigcode.code.StarCoder",
|
||
"clarifai/salesforce.xgen.xgen-7b-8k-instruct",
|
||
"clarifai/mosaicml.mpt.mpt-7b-instruct",
|
||
"clarifai/anthropic.completion.claude-3-opus",
|
||
"clarifai/anthropic.completion.claude-3-sonnet",
|
||
"clarifai/gcp.generate.gemini-1_5-pro",
|
||
"clarifai/gcp.generate.imagen-2",
|
||
"clarifai/salesforce.blip.general-english-image-caption-blip-2",
|
||
]
|
||
|
||
|
||
huggingface_models: List = [
|
||
"meta-llama/Llama-2-7b-hf",
|
||
"meta-llama/Llama-2-7b-chat-hf",
|
||
"meta-llama/Llama-2-13b-hf",
|
||
"meta-llama/Llama-2-13b-chat-hf",
|
||
"meta-llama/Llama-2-70b-hf",
|
||
"meta-llama/Llama-2-70b-chat-hf",
|
||
"meta-llama/Llama-2-7b",
|
||
"meta-llama/Llama-2-7b-chat",
|
||
"meta-llama/Llama-2-13b",
|
||
"meta-llama/Llama-2-13b-chat",
|
||
"meta-llama/Llama-2-70b",
|
||
"meta-llama/Llama-2-70b-chat",
|
||
] # these have been tested on extensively. But by default all text2text-generation and text-generation models are supported by liteLLM. - https://docs.litellm.ai/docs/providers
|
||
empower_models = [
|
||
"empower/empower-functions",
|
||
"empower/empower-functions-small",
|
||
]
|
||
|
||
together_ai_models: List = [
|
||
# llama llms - chat
|
||
"togethercomputer/llama-2-70b-chat",
|
||
# llama llms - language / instruct
|
||
"togethercomputer/llama-2-70b",
|
||
"togethercomputer/LLaMA-2-7B-32K",
|
||
"togethercomputer/Llama-2-7B-32K-Instruct",
|
||
"togethercomputer/llama-2-7b",
|
||
# falcon llms
|
||
"togethercomputer/falcon-40b-instruct",
|
||
"togethercomputer/falcon-7b-instruct",
|
||
# alpaca
|
||
"togethercomputer/alpaca-7b",
|
||
# chat llms
|
||
"HuggingFaceH4/starchat-alpha",
|
||
# code llms
|
||
"togethercomputer/CodeLlama-34b",
|
||
"togethercomputer/CodeLlama-34b-Instruct",
|
||
"togethercomputer/CodeLlama-34b-Python",
|
||
"defog/sqlcoder",
|
||
"NumbersStation/nsql-llama-2-7B",
|
||
"WizardLM/WizardCoder-15B-V1.0",
|
||
"WizardLM/WizardCoder-Python-34B-V1.0",
|
||
# language llms
|
||
"NousResearch/Nous-Hermes-Llama2-13b",
|
||
"Austism/chronos-hermes-13b",
|
||
"upstage/SOLAR-0-70b-16bit",
|
||
"WizardLM/WizardLM-70B-V1.0",
|
||
] # supports all together ai models, just pass in the model id e.g. completion(model="together_computer/replit_code_3b",...)
|
||
|
||
|
||
baseten_models: List = [
|
||
"qvv0xeq",
|
||
"q841o8w",
|
||
"31dxrj3",
|
||
] # FALCON 7B # WizardLM # Mosaic ML
|
||
|
||
BEDROCK_INVOKE_PROVIDERS_LITERAL = Literal[
|
||
"cohere",
|
||
"anthropic",
|
||
"mistral",
|
||
"amazon",
|
||
"meta",
|
||
"llama",
|
||
"ai21",
|
||
"nova",
|
||
"deepseek_r1",
|
||
]
|
||
|
||
open_ai_embedding_models: List = ["text-embedding-ada-002"]
|
||
cohere_embedding_models: List = [
|
||
"embed-english-v3.0",
|
||
"embed-english-light-v3.0",
|
||
"embed-multilingual-v3.0",
|
||
"embed-english-v2.0",
|
||
"embed-english-light-v2.0",
|
||
"embed-multilingual-v2.0",
|
||
]
|
||
bedrock_embedding_models: List = [
|
||
"amazon.titan-embed-text-v1",
|
||
"cohere.embed-english-v3",
|
||
"cohere.embed-multilingual-v3",
|
||
]
|
||
|
||
known_tokenizer_config = {
|
||
"mistralai/Mistral-7B-Instruct-v0.1": {
|
||
"tokenizer": {
|
||
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
||
"bos_token": "<s>",
|
||
"eos_token": "</s>",
|
||
},
|
||
"status": "success",
|
||
},
|
||
"meta-llama/Meta-Llama-3-8B-Instruct": {
|
||
"tokenizer": {
|
||
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
||
"bos_token": "<|begin_of_text|>",
|
||
"eos_token": "",
|
||
},
|
||
"status": "success",
|
||
},
|
||
"deepseek-r1/deepseek-r1-7b-instruct": {
|
||
"tokenizer": {
|
||
"add_bos_token": True,
|
||
"add_eos_token": False,
|
||
"bos_token": {
|
||
"__type": "AddedToken",
|
||
"content": "<|begin▁of▁sentence|>",
|
||
"lstrip": False,
|
||
"normalized": True,
|
||
"rstrip": False,
|
||
"single_word": False,
|
||
},
|
||
"clean_up_tokenization_spaces": False,
|
||
"eos_token": {
|
||
"__type": "AddedToken",
|
||
"content": "<|end▁of▁sentence|>",
|
||
"lstrip": False,
|
||
"normalized": True,
|
||
"rstrip": False,
|
||
"single_word": False,
|
||
},
|
||
"legacy": True,
|
||
"model_max_length": 16384,
|
||
"pad_token": {
|
||
"__type": "AddedToken",
|
||
"content": "<|end▁of▁sentence|>",
|
||
"lstrip": False,
|
||
"normalized": True,
|
||
"rstrip": False,
|
||
"single_word": False,
|
||
},
|
||
"sp_model_kwargs": {},
|
||
"unk_token": None,
|
||
"tokenizer_class": "LlamaTokenizerFast",
|
||
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|><think>\\n'}}{% endif %}",
|
||
},
|
||
"status": "success",
|
||
},
|
||
}
|
||
|
||
|
||
OPENAI_FINISH_REASONS = ["stop", "length", "function_call", "content_filter", "null"]
|
||
HUMANLOOP_PROMPT_CACHE_TTL_SECONDS = 60 # 1 minute
|
||
RESPONSE_FORMAT_TOOL_NAME = "json_tool_call" # default tool name used when converting response format to tool call
|
||
|
||
########################### Logging Callback Constants ###########################
|
||
AZURE_STORAGE_MSFT_VERSION = "2019-07-07"
|
||
PROMETHEUS_BUDGET_METRICS_REFRESH_INTERVAL_MINUTES = 5
|
||
MCP_TOOL_NAME_PREFIX = "mcp_tool"
|
||
|
||
########################### LiteLLM Proxy Specific Constants ###########################
|
||
########################################################################################
|
||
MAX_SPENDLOG_ROWS_TO_QUERY = (
|
||
1_000_000 # if spendLogs has more than 1M rows, do not query the DB
|
||
)
|
||
DEFAULT_SOFT_BUDGET = (
|
||
50.0 # by default all litellm proxy keys have a soft budget of 50.0
|
||
)
|
||
# makes it clear this is a rate limit error for a litellm virtual key
|
||
RATE_LIMIT_ERROR_MESSAGE_FOR_VIRTUAL_KEY = "LiteLLM Virtual Key user_api_key_hash"
|
||
|
||
# pass through route constansts
|
||
BEDROCK_AGENT_RUNTIME_PASS_THROUGH_ROUTES = [
|
||
"agents/",
|
||
"knowledgebases/",
|
||
"flows/",
|
||
"retrieveAndGenerate/",
|
||
"rerank/",
|
||
"generateQuery/",
|
||
"optimize-prompt/",
|
||
]
|
||
|
||
BATCH_STATUS_POLL_INTERVAL_SECONDS = 3600 # 1 hour
|
||
BATCH_STATUS_POLL_MAX_ATTEMPTS = 24 # for 24 hours
|
||
|
||
HEALTH_CHECK_TIMEOUT_SECONDS = 60 # 60 seconds
|
||
|
||
UI_SESSION_TOKEN_TEAM_ID = "litellm-dashboard"
|
||
LITELLM_PROXY_ADMIN_NAME = "default_user_id"
|
||
|
||
########################### DB CRON JOB NAMES ###########################
|
||
DB_SPEND_UPDATE_JOB_NAME = "db_spend_update_job"
|
||
PROMETHEUS_EMIT_BUDGET_METRICS_JOB_NAME = "prometheus_emit_budget_metrics_job"
|
||
DEFAULT_CRON_JOB_LOCK_TTL_SECONDS = 60 # 1 minute
|
||
PROXY_BUDGET_RESCHEDULER_MIN_TIME = 597
|
||
PROXY_BUDGET_RESCHEDULER_MAX_TIME = 605
|
||
PROXY_BATCH_WRITE_AT = 10 # in seconds
|
||
DEFAULT_HEALTH_CHECK_INTERVAL = 300 # 5 minutes
|
||
PROMETHEUS_FALLBACK_STATS_SEND_TIME_HOURS = 9
|
||
DEFAULT_MODEL_CREATED_AT_TIME = 1677610602 # returns on `/models` endpoint
|
||
DEFAULT_SLACK_ALERTING_THRESHOLD = 300
|
||
MAX_TEAM_LIST_LIMIT = 20
|
||
DEFAULT_PROMPT_INJECTION_SIMILARITY_THRESHOLD = 0.7
|
||
LENGTH_OF_LITELLM_GENERATED_KEY = 16
|
||
SECRET_MANAGER_REFRESH_INTERVAL = 86400
|