litellm-mirror/litellm/llms/openai/completion/utils.py
Krish Dholakia 760328b6ad
Litellm dev 12 25 2025 p2 (#7420)
* test: add new test image embedding to base llm unit tests

Addresses https://github.com/BerriAI/litellm/issues/6515

* fix(bedrock/embed/multimodal-embeddings): strip data prefix from image urls for bedrock multimodal embeddings

Fix https://github.com/BerriAI/litellm/issues/6515

* feat: initial commit for fireworks ai audio transcription support

Relevant issue: https://github.com/BerriAI/litellm/issues/7134

* test: initial fireworks ai test

* feat(fireworks_ai/): implemented fireworks ai audio transcription config

* fix(utils.py): register fireworks ai audio transcription config, in config manager

* fix(utils.py): add fireworks ai param translation to 'get_optional_params_transcription'

* refactor(fireworks_ai/): define text completion route with model name handling

moves model name handling to specific fireworks routes, as required by their api

* refactor(fireworks_ai/chat): define transform_Request - allows fixing model if accounts/ is missing

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting errors

* fix(handler.py): fix linting errors

* fix(main.py): fix tgai text completion route

* refactor(together_ai/completion): refactors together ai text completion route to just use provider transform request

* refactor: move test_fine_tuning_api out of local_testing

reduces local testing ci/cd time
2024-12-25 18:35:34 -08:00

50 lines
1.7 KiB
Python

from typing import List, Union, cast
from litellm.litellm_core_utils.prompt_templates.common_utils import (
convert_content_list_to_str,
)
from litellm.types.llms.openai import (
AllMessageValues,
AllPromptValues,
OpenAITextCompletionUserMessage,
)
def is_tokens_or_list_of_tokens(value: List):
# Check if it's a list of integers (tokens)
if isinstance(value, list) and all(isinstance(item, int) for item in value):
return True
# Check if it's a list of lists of integers (list of tokens)
if isinstance(value, list) and all(
isinstance(item, list) and all(isinstance(i, int) for i in item)
for item in value
):
return True
return False
def _transform_prompt(
messages: Union[List[AllMessageValues], List[OpenAITextCompletionUserMessage]],
) -> AllPromptValues:
if len(messages) == 1: # base case
message_content = messages[0].get("content")
if (
message_content
and isinstance(message_content, list)
and is_tokens_or_list_of_tokens(message_content)
):
openai_prompt: AllPromptValues = cast(AllPromptValues, message_content)
else:
openai_prompt = ""
content = convert_content_list_to_str(cast(AllMessageValues, messages[0]))
openai_prompt += content
else:
prompt_str_list: List[str] = []
for m in messages:
try: # expect list of int/list of list of int to be a 1 message array only.
content = convert_content_list_to_str(cast(AllMessageValues, m))
prompt_str_list.append(content)
except Exception as e:
raise e
openai_prompt = prompt_str_list
return openai_prompt