mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* remove unused imports * fix AmazonConverseConfig * fix test * fix import * ruff check fixes * test fixes * fix testing * fix imports
149 lines
4.5 KiB
Python
149 lines
4.5 KiB
Python
import time
|
|
from typing import Callable, Optional, Union
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.prompt_templates.factory import (
|
|
custom_prompt,
|
|
prompt_factory,
|
|
)
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
_get_httpx_client,
|
|
)
|
|
from litellm.utils import ModelResponse, Usage
|
|
|
|
from ..common_utils import PetalsError
|
|
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
api_base: Optional[str],
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
stream=False,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
|
):
|
|
## Load Config
|
|
config = litellm.PetalsConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > petals_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
if model in litellm.custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = litellm.custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details["roles"],
|
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
messages=messages,
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
|
|
output_text: Optional[str] = None
|
|
if api_base:
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key="",
|
|
additional_args={
|
|
"complete_input_dict": optional_params,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
data = {"model": model, "inputs": prompt, **optional_params}
|
|
|
|
## COMPLETION CALL
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = _get_httpx_client()
|
|
response = client.post(api_base, data=data)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key="",
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": optional_params},
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
try:
|
|
output_text = response.json()["outputs"]
|
|
except Exception as e:
|
|
PetalsError(
|
|
status_code=response.status_code,
|
|
message=str(e),
|
|
headers=response.headers,
|
|
)
|
|
|
|
else:
|
|
try:
|
|
from petals import AutoDistributedModelForCausalLM # type: ignore
|
|
from transformers import AutoTokenizer
|
|
except Exception:
|
|
raise Exception(
|
|
"Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals"
|
|
)
|
|
|
|
model = model
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model, use_fast=False, add_bos_token=False
|
|
)
|
|
model_obj = AutoDistributedModelForCausalLM.from_pretrained(model)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key="",
|
|
additional_args={"complete_input_dict": optional_params},
|
|
)
|
|
|
|
## COMPLETION CALL
|
|
inputs = tokenizer(prompt, return_tensors="pt")["input_ids"]
|
|
|
|
# optional params: max_new_tokens=1,temperature=0.9, top_p=0.6
|
|
outputs = model_obj.generate(inputs, **optional_params)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key="",
|
|
original_response=outputs,
|
|
additional_args={"complete_input_dict": optional_params},
|
|
)
|
|
## RESPONSE OBJECT
|
|
output_text = tokenizer.decode(outputs[0])
|
|
|
|
if output_text is not None and len(output_text) > 0:
|
|
model_response.choices[0].message.content = output_text # type: ignore
|
|
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content"))
|
|
)
|
|
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
return model_response
|
|
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|