litellm-mirror/litellm/llms/petals/completion/handler.py
Ishaan Jaff c7f14e936a
(code quality) run ruff rule to ban unused imports (#7313)
* remove unused imports

* fix AmazonConverseConfig

* fix test

* fix import

* ruff check fixes

* test fixes

* fix testing

* fix imports
2024-12-19 12:33:42 -08:00

149 lines
4.5 KiB
Python

import time
from typing import Callable, Optional, Union
import litellm
from litellm.litellm_core_utils.prompt_templates.factory import (
custom_prompt,
prompt_factory,
)
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
_get_httpx_client,
)
from litellm.utils import ModelResponse, Usage
from ..common_utils import PetalsError
def completion(
model: str,
messages: list,
api_base: Optional[str],
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: dict,
stream=False,
litellm_params=None,
logger_fn=None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
):
## Load Config
config = litellm.PetalsConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > petals_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
if model in litellm.custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = litellm.custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
prompt = prompt_factory(model=model, messages=messages)
output_text: Optional[str] = None
if api_base:
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={
"complete_input_dict": optional_params,
"api_base": api_base,
},
)
data = {"model": model, "inputs": prompt, **optional_params}
## COMPLETION CALL
if client is None or not isinstance(client, HTTPHandler):
client = _get_httpx_client()
response = client.post(api_base, data=data)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=response.text,
additional_args={"complete_input_dict": optional_params},
)
## RESPONSE OBJECT
try:
output_text = response.json()["outputs"]
except Exception as e:
PetalsError(
status_code=response.status_code,
message=str(e),
headers=response.headers,
)
else:
try:
from petals import AutoDistributedModelForCausalLM # type: ignore
from transformers import AutoTokenizer
except Exception:
raise Exception(
"Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals"
)
model = model
tokenizer = AutoTokenizer.from_pretrained(
model, use_fast=False, add_bos_token=False
)
model_obj = AutoDistributedModelForCausalLM.from_pretrained(model)
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": optional_params},
)
## COMPLETION CALL
inputs = tokenizer(prompt, return_tensors="pt")["input_ids"]
# optional params: max_new_tokens=1,temperature=0.9, top_p=0.6
outputs = model_obj.generate(inputs, **optional_params)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=outputs,
additional_args={"complete_input_dict": optional_params},
)
## RESPONSE OBJECT
output_text = tokenizer.decode(outputs[0])
if output_text is not None and len(output_text) > 0:
model_response.choices[0].message.content = output_text # type: ignore
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content"))
)
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass