mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* test: add initial e2e test * fix(vertex_ai/files): initial commit adding sync file create support * refactor: initial commit of vertex ai non-jsonl files reaching gcp endpoint * fix(vertex_ai/files/transformation.py): initial working commit of non-jsonl file call reaching backend endpoint * fix(vertex_ai/files/transformation.py): working e2e non-jsonl file upload * test: working e2e jsonl call * test: unit testing for jsonl file creation * fix(vertex_ai/transformation.py): reset file pointer after read allow multiple reads on same file object * fix: fix linting errors * fix: fix ruff linting errors * fix: fix import * fix: fix linting error * fix: fix linting error * fix(vertex_ai/files/transformation.py): fix linting error * test: update test * test: update tests * fix: fix linting errors * fix: fix test * fix: fix linting error
472 lines
16 KiB
Python
472 lines
16 KiB
Python
# What is this?
|
|
## Controller file for Predibase Integration - https://predibase.com/
|
|
|
|
import json
|
|
import os
|
|
import time
|
|
from functools import partial
|
|
from typing import Callable, Optional, Union
|
|
|
|
import httpx # type: ignore
|
|
|
|
import litellm
|
|
import litellm.litellm_core_utils
|
|
import litellm.litellm_core_utils.litellm_logging
|
|
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
|
from litellm.litellm_core_utils.prompt_templates.factory import (
|
|
custom_prompt,
|
|
prompt_factory,
|
|
)
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.types.utils import LiteLLMLoggingBaseClass
|
|
from litellm.utils import Choices, CustomStreamWrapper, Message, ModelResponse, Usage
|
|
|
|
from ..common_utils import PredibaseError
|
|
|
|
|
|
async def make_call(
|
|
client: AsyncHTTPHandler,
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
):
|
|
response = await client.post(
|
|
api_base, headers=headers, data=data, stream=True, timeout=timeout
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
raise PredibaseError(status_code=response.status_code, message=response.text)
|
|
|
|
completion_stream = response.aiter_lines()
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=completion_stream, # Pass the completion stream for logging
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream
|
|
|
|
|
|
class PredibaseChatCompletion:
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def output_parser(self, generated_text: str):
|
|
"""
|
|
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens.
|
|
|
|
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763
|
|
"""
|
|
chat_template_tokens = [
|
|
"<|assistant|>",
|
|
"<|system|>",
|
|
"<|user|>",
|
|
"<s>",
|
|
"</s>",
|
|
]
|
|
for token in chat_template_tokens:
|
|
if generated_text.strip().startswith(token):
|
|
generated_text = generated_text.replace(token, "", 1)
|
|
if generated_text.endswith(token):
|
|
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1]
|
|
return generated_text
|
|
|
|
def process_response( # noqa: PLR0915
|
|
self,
|
|
model: str,
|
|
response: httpx.Response,
|
|
model_response: ModelResponse,
|
|
stream: bool,
|
|
logging_obj: LiteLLMLoggingBaseClass,
|
|
optional_params: dict,
|
|
api_key: str,
|
|
data: Union[dict, str],
|
|
messages: list,
|
|
print_verbose,
|
|
encoding,
|
|
) -> ModelResponse:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response.text}")
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = response.json()
|
|
except Exception:
|
|
raise PredibaseError(message=response.text, status_code=422)
|
|
if "error" in completion_response:
|
|
raise PredibaseError(
|
|
message=str(completion_response["error"]),
|
|
status_code=response.status_code,
|
|
)
|
|
else:
|
|
if not isinstance(completion_response, dict):
|
|
raise PredibaseError(
|
|
status_code=422,
|
|
message=f"'completion_response' is not a dictionary - {completion_response}",
|
|
)
|
|
elif "generated_text" not in completion_response:
|
|
raise PredibaseError(
|
|
status_code=422,
|
|
message=f"'generated_text' is not a key response dictionary - {completion_response}",
|
|
)
|
|
if len(completion_response["generated_text"]) > 0:
|
|
model_response.choices[0].message.content = self.output_parser( # type: ignore
|
|
completion_response["generated_text"]
|
|
)
|
|
## GETTING LOGPROBS + FINISH REASON
|
|
if (
|
|
"details" in completion_response
|
|
and "tokens" in completion_response["details"]
|
|
):
|
|
model_response.choices[0].finish_reason = map_finish_reason(
|
|
completion_response["details"]["finish_reason"]
|
|
)
|
|
sum_logprob = 0
|
|
for token in completion_response["details"]["tokens"]:
|
|
if token["logprob"] is not None:
|
|
sum_logprob += token["logprob"]
|
|
setattr(
|
|
model_response.choices[0].message, # type: ignore
|
|
"_logprob",
|
|
sum_logprob, # [TODO] move this to using the actual logprobs
|
|
)
|
|
if "best_of" in optional_params and optional_params["best_of"] > 1:
|
|
if (
|
|
"details" in completion_response
|
|
and "best_of_sequences" in completion_response["details"]
|
|
):
|
|
choices_list = []
|
|
for idx, item in enumerate(
|
|
completion_response["details"]["best_of_sequences"]
|
|
):
|
|
sum_logprob = 0
|
|
for token in item["tokens"]:
|
|
if token["logprob"] is not None:
|
|
sum_logprob += token["logprob"]
|
|
if len(item["generated_text"]) > 0:
|
|
message_obj = Message(
|
|
content=self.output_parser(item["generated_text"]),
|
|
logprobs=sum_logprob,
|
|
)
|
|
else:
|
|
message_obj = Message(content=None)
|
|
choice_obj = Choices(
|
|
finish_reason=map_finish_reason(item["finish_reason"]),
|
|
index=idx + 1,
|
|
message=message_obj,
|
|
)
|
|
choices_list.append(choice_obj)
|
|
model_response.choices.extend(choices_list)
|
|
|
|
## CALCULATING USAGE
|
|
prompt_tokens = 0
|
|
try:
|
|
prompt_tokens = litellm.token_counter(messages=messages)
|
|
except Exception:
|
|
# this should remain non blocking we should not block a response returning if calculating usage fails
|
|
pass
|
|
output_text = model_response["choices"][0]["message"].get("content", "")
|
|
if output_text is not None and len(output_text) > 0:
|
|
completion_tokens = 0
|
|
try:
|
|
completion_tokens = len(
|
|
encoding.encode(
|
|
model_response["choices"][0]["message"].get("content", "")
|
|
)
|
|
) ##[TODO] use a model-specific tokenizer
|
|
except Exception:
|
|
# this should remain non blocking we should not block a response returning if calculating usage fails
|
|
pass
|
|
else:
|
|
completion_tokens = 0
|
|
|
|
total_tokens = prompt_tokens + completion_tokens
|
|
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=total_tokens,
|
|
)
|
|
model_response.usage = usage # type: ignore
|
|
|
|
## RESPONSE HEADERS
|
|
predibase_headers = response.headers
|
|
response_headers = {}
|
|
for k, v in predibase_headers.items():
|
|
if k.startswith("x-"):
|
|
response_headers["llm_provider-{}".format(k)] = v
|
|
|
|
model_response._hidden_params["additional_headers"] = response_headers
|
|
|
|
return model_response
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key: str,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
tenant_id: str,
|
|
timeout: Union[float, httpx.Timeout],
|
|
acompletion=None,
|
|
logger_fn=None,
|
|
headers: dict = {},
|
|
) -> Union[ModelResponse, CustomStreamWrapper]:
|
|
headers = litellm.PredibaseConfig().validate_environment(
|
|
api_key=api_key,
|
|
headers=headers,
|
|
messages=messages,
|
|
optional_params=optional_params,
|
|
model=model,
|
|
litellm_params=litellm_params,
|
|
)
|
|
completion_url = ""
|
|
input_text = ""
|
|
base_url = "https://serving.app.predibase.com"
|
|
|
|
if "https" in model:
|
|
completion_url = model
|
|
elif api_base:
|
|
base_url = api_base
|
|
elif "PREDIBASE_API_BASE" in os.environ:
|
|
base_url = os.getenv("PREDIBASE_API_BASE", "")
|
|
|
|
completion_url = f"{base_url}/{tenant_id}/deployments/v2/llms/{model}"
|
|
|
|
if optional_params.get("stream", False) is True:
|
|
completion_url += "/generate_stream"
|
|
else:
|
|
completion_url += "/generate"
|
|
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details["roles"],
|
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
messages=messages,
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
|
|
## Load Config
|
|
config = litellm.PredibaseConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
stream = optional_params.pop("stream", False)
|
|
|
|
data = {
|
|
"inputs": prompt,
|
|
"parameters": optional_params,
|
|
}
|
|
input_text = prompt
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input_text,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"headers": headers,
|
|
"api_base": completion_url,
|
|
"acompletion": acompletion,
|
|
},
|
|
)
|
|
## COMPLETION CALL
|
|
if acompletion is True:
|
|
### ASYNC STREAMING
|
|
if stream is True:
|
|
return self.async_streaming(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=completion_url,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
timeout=timeout,
|
|
) # type: ignore
|
|
else:
|
|
### ASYNC COMPLETION
|
|
return self.async_completion(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=completion_url,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=False,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
timeout=timeout,
|
|
) # type: ignore
|
|
|
|
### SYNC STREAMING
|
|
if stream is True:
|
|
response = litellm.module_level_client.post(
|
|
completion_url,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
stream=stream,
|
|
timeout=timeout, # type: ignore
|
|
)
|
|
_response = CustomStreamWrapper(
|
|
response.iter_lines(),
|
|
model,
|
|
custom_llm_provider="predibase",
|
|
logging_obj=logging_obj,
|
|
)
|
|
return _response
|
|
### SYNC COMPLETION
|
|
else:
|
|
response = litellm.module_level_client.post(
|
|
url=completion_url,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
timeout=timeout, # type: ignore
|
|
)
|
|
return self.process_response(
|
|
model=model,
|
|
response=response,
|
|
model_response=model_response,
|
|
stream=optional_params.get("stream", False),
|
|
logging_obj=logging_obj, # type: ignore
|
|
optional_params=optional_params,
|
|
api_key=api_key,
|
|
data=data,
|
|
messages=messages,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
)
|
|
|
|
async def async_completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
data: dict,
|
|
optional_params: dict,
|
|
timeout: Union[float, httpx.Timeout],
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
) -> ModelResponse:
|
|
async_handler = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.PREDIBASE,
|
|
params={"timeout": timeout},
|
|
)
|
|
try:
|
|
response = await async_handler.post(
|
|
api_base, headers=headers, data=json.dumps(data)
|
|
)
|
|
except httpx.HTTPStatusError as e:
|
|
raise PredibaseError(
|
|
status_code=e.response.status_code,
|
|
message="HTTPStatusError - received status_code={}, error_message={}".format(
|
|
e.response.status_code, e.response.text
|
|
),
|
|
)
|
|
except Exception as e:
|
|
for exception in litellm.LITELLM_EXCEPTION_TYPES:
|
|
if isinstance(e, exception):
|
|
raise e
|
|
raise PredibaseError(
|
|
status_code=500, message="{}".format(str(e))
|
|
) # don't use verbose_logger.exception, if exception is raised
|
|
return self.process_response(
|
|
model=model,
|
|
response=response,
|
|
model_response=model_response,
|
|
stream=stream,
|
|
logging_obj=logging_obj,
|
|
api_key=api_key,
|
|
data=data,
|
|
messages=messages,
|
|
print_verbose=print_verbose,
|
|
optional_params=optional_params,
|
|
encoding=encoding,
|
|
)
|
|
|
|
async def async_streaming(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
data: dict,
|
|
timeout: Union[float, httpx.Timeout],
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
) -> CustomStreamWrapper:
|
|
data["stream"] = True
|
|
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=None,
|
|
make_call=partial(
|
|
make_call,
|
|
api_base=api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
timeout=timeout,
|
|
),
|
|
model=model,
|
|
custom_llm_provider="predibase",
|
|
logging_obj=logging_obj,
|
|
)
|
|
return streamwrapper
|
|
|
|
def embedding(self, *args, **kwargs):
|
|
pass
|