litellm-mirror/litellm/proxy/anthropic_endpoints/endpoints.py
2025-03-12 18:57:41 -07:00

252 lines
9.2 KiB
Python

"""
Unified /v1/messages endpoint - (Anthropic Spec)
"""
import asyncio
import json
import time
import traceback
from fastapi import APIRouter, Depends, HTTPException, Request, Response, status
from fastapi.responses import StreamingResponse
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.proxy._types import *
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
from litellm.proxy.utils import ProxyLogging
router = APIRouter()
async def async_data_generator_anthropic(
response,
user_api_key_dict: UserAPIKeyAuth,
request_data: dict,
proxy_logging_obj: ProxyLogging,
):
verbose_proxy_logger.debug("inside generator")
try:
time.time()
async for chunk in response:
verbose_proxy_logger.debug(
"async_data_generator: received streaming chunk - {}".format(chunk)
)
### CALL HOOKS ### - modify outgoing data
chunk = await proxy_logging_obj.async_post_call_streaming_hook(
user_api_key_dict=user_api_key_dict, response=chunk
)
yield chunk
except Exception as e:
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.async_data_generator(): Exception occured - {}".format(
str(e)
)
)
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict,
original_exception=e,
request_data=request_data,
)
verbose_proxy_logger.debug(
f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`"
)
if isinstance(e, HTTPException):
raise e
else:
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}\n\n{error_traceback}"
proxy_exception = ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
error_returned = json.dumps({"error": proxy_exception.to_dict()})
yield f"data: {error_returned}\n\n"
@router.post(
"/v1/messages",
tags=["[beta] Anthropic `/v1/messages`"],
dependencies=[Depends(user_api_key_auth)],
include_in_schema=False,
)
async def anthropic_response( # noqa: PLR0915
fastapi_response: Response,
request: Request,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Use `{PROXY_BASE_URL}/anthropic/v1/messages` instead - [Docs](https://docs.litellm.ai/docs/anthropic_completion).
This was a BETA endpoint that calls 100+ LLMs in the anthropic format.
"""
from litellm.proxy.proxy_server import (
general_settings,
llm_router,
proxy_config,
proxy_logging_obj,
user_api_base,
user_max_tokens,
user_model,
user_request_timeout,
user_temperature,
version,
)
request_data = await _read_request_body(request=request)
data: dict = {**request_data}
try:
data["model"] = (
general_settings.get("completion_model", None) # server default
or user_model # model name passed via cli args
or data.get("model", None) # default passed in http request
)
if user_model:
data["model"] = user_model
data = await add_litellm_data_to_request(
data=data, # type: ignore
request=request,
general_settings=general_settings,
user_api_key_dict=user_api_key_dict,
version=version,
proxy_config=proxy_config,
)
# override with user settings, these are params passed via cli
if user_temperature:
data["temperature"] = user_temperature
if user_request_timeout:
data["request_timeout"] = user_request_timeout
if user_max_tokens:
data["max_tokens"] = user_max_tokens
if user_api_base:
data["api_base"] = user_api_base
### MODEL ALIAS MAPPING ###
# check if model name in model alias map
# get the actual model name
if data["model"] in litellm.model_alias_map:
data["model"] = litellm.model_alias_map[data["model"]]
### CALL HOOKS ### - modify incoming data before calling the model
data = await proxy_logging_obj.pre_call_hook( # type: ignore
user_api_key_dict=user_api_key_dict, data=data, call_type="text_completion"
)
### ROUTE THE REQUESTs ###
router_model_names = llm_router.model_names if llm_router is not None else []
# skip router if user passed their key
if (
llm_router is not None and data["model"] in router_model_names
): # model in router model list
llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
elif (
llm_router is not None
and llm_router.model_group_alias is not None
and data["model"] in llm_router.model_group_alias
): # model set in model_group_alias
llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
elif (
llm_router is not None and data["model"] in llm_router.deployment_names
): # model in router deployments, calling a specific deployment on the router
llm_response = asyncio.create_task(
llm_router.aanthropic_messages(**data, specific_deployment=True)
)
elif (
llm_router is not None and data["model"] in llm_router.get_model_ids()
): # model in router model list
llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
elif (
llm_router is not None
and data["model"] not in router_model_names
and (
llm_router.default_deployment is not None
or len(llm_router.pattern_router.patterns) > 0
)
): # model in router deployments, calling a specific deployment on the router
llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
elif user_model is not None: # `litellm --model <your-model-name>`
llm_response = asyncio.create_task(litellm.anthropic_messages(**data))
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "completion: Invalid model name passed in model="
+ data.get("model", "")
},
)
# Await the llm_response task
response = await llm_response
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
response_cost = hidden_params.get("response_cost", None) or ""
### ALERTING ###
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
verbose_proxy_logger.debug("final response: %s", response)
fastapi_response.headers.update(
ProxyBaseLLMRequestProcessing.get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
response_cost=response_cost,
request_data=data,
hidden_params=hidden_params,
)
)
if (
"stream" in data and data["stream"] is True
): # use generate_responses to stream responses
selected_data_generator = async_data_generator_anthropic(
response=response,
user_api_key_dict=user_api_key_dict,
request_data=data,
proxy_logging_obj=proxy_logging_obj,
)
return StreamingResponse(
selected_data_generator, # type: ignore
media_type="text/event-stream",
)
verbose_proxy_logger.info("\nResponse from Litellm:\n{}".format(response))
return response
except Exception as e:
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.anthropic_response(): Exception occured - {}".format(
str(e)
)
)
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)