litellm-mirror/litellm/llms/xai/chat/transformation.py
Ishaan Jaff 57bc03b30b
[Feat] Add reasoning_effort support for xai/grok-3-mini-beta model family (#9932)
* add BaseReasoningEffortTests

* BaseReasoningLLMTests

* fix test rename

* docs update thinking / reasoning content docs
2025-04-11 19:17:09 -07:00

90 lines
2.8 KiB
Python

from typing import List, Optional, Tuple
import litellm
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.prompt_templates.common_utils import (
strip_name_from_messages,
)
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
XAI_API_BASE = "https://api.x.ai/v1"
class XAIChatConfig(OpenAIGPTConfig):
@property
def custom_llm_provider(self) -> Optional[str]:
return "xai"
def _get_openai_compatible_provider_info(
self, api_base: Optional[str], api_key: Optional[str]
) -> Tuple[Optional[str], Optional[str]]:
api_base = api_base or get_secret_str("XAI_API_BASE") or XAI_API_BASE # type: ignore
dynamic_api_key = api_key or get_secret_str("XAI_API_KEY")
return api_base, dynamic_api_key
def get_supported_openai_params(self, model: str) -> list:
base_openai_params = [
"frequency_penalty",
"logit_bias",
"logprobs",
"max_tokens",
"n",
"presence_penalty",
"response_format",
"seed",
"stop",
"stream",
"stream_options",
"temperature",
"tool_choice",
"tools",
"top_logprobs",
"top_p",
"user",
]
try:
if litellm.supports_reasoning(
model=model, custom_llm_provider=self.custom_llm_provider
):
base_openai_params.append("reasoning_effort")
except Exception as e:
verbose_logger.debug(f"Error checking if model supports reasoning: {e}")
return base_openai_params
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool = False,
) -> dict:
supported_openai_params = self.get_supported_openai_params(model=model)
for param, value in non_default_params.items():
if param == "max_completion_tokens":
optional_params["max_tokens"] = value
elif param in supported_openai_params:
if value is not None:
optional_params[param] = value
return optional_params
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
"""
Handle https://github.com/BerriAI/litellm/issues/9720
Filter out 'name' from messages
"""
messages = strip_name_from_messages(messages)
return super().transform_request(
model, messages, optional_params, litellm_params, headers
)