mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 13s
* dd - emit tags on llm obs payload * dd - show requester tags on traces * test_get_datadog_tags * _get_datadog_tags * fix dd POD_NAME * test_get_datadog_tags
579 lines
20 KiB
Python
579 lines
20 KiB
Python
import io
|
|
import os
|
|
import sys
|
|
|
|
|
|
sys.path.insert(0, os.path.abspath("../.."))
|
|
|
|
import asyncio
|
|
import gzip
|
|
import json
|
|
import logging
|
|
import time
|
|
from unittest.mock import AsyncMock, patch
|
|
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm import completion
|
|
from litellm._logging import verbose_logger
|
|
from litellm.integrations.datadog.datadog import *
|
|
from datetime import datetime, timedelta
|
|
from litellm.types.utils import (
|
|
StandardLoggingPayload,
|
|
StandardLoggingModelInformation,
|
|
StandardLoggingMetadata,
|
|
StandardLoggingHiddenParams,
|
|
)
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
|
|
|
|
def create_standard_logging_payload() -> StandardLoggingPayload:
|
|
return StandardLoggingPayload(
|
|
id="test_id",
|
|
call_type="completion",
|
|
response_cost=0.1,
|
|
response_cost_failure_debug_info=None,
|
|
status="success",
|
|
total_tokens=30,
|
|
prompt_tokens=20,
|
|
completion_tokens=10,
|
|
startTime=1234567890.0,
|
|
endTime=1234567891.0,
|
|
completionStartTime=1234567890.5,
|
|
model_map_information=StandardLoggingModelInformation(
|
|
model_map_key="gpt-3.5-turbo", model_map_value=None
|
|
),
|
|
model="gpt-3.5-turbo",
|
|
model_id="model-123",
|
|
model_group="openai-gpt",
|
|
api_base="https://api.openai.com",
|
|
metadata=StandardLoggingMetadata(
|
|
user_api_key_hash="test_hash",
|
|
user_api_key_org_id=None,
|
|
user_api_key_alias="test_alias",
|
|
user_api_key_team_id="test_team",
|
|
user_api_key_user_id="test_user",
|
|
user_api_key_team_alias="test_team_alias",
|
|
spend_logs_metadata=None,
|
|
requester_ip_address="127.0.0.1",
|
|
requester_metadata=None,
|
|
),
|
|
cache_hit=False,
|
|
cache_key=None,
|
|
saved_cache_cost=0.0,
|
|
request_tags=[],
|
|
end_user=None,
|
|
requester_ip_address="127.0.0.1",
|
|
messages=[{"role": "user", "content": "Hello, world!"}],
|
|
response={"choices": [{"message": {"content": "Hi there!"}}]},
|
|
error_str=None,
|
|
model_parameters={"stream": True},
|
|
hidden_params=StandardLoggingHiddenParams(
|
|
model_id="model-123",
|
|
cache_key=None,
|
|
api_base="https://api.openai.com",
|
|
response_cost="0.1",
|
|
additional_headers=None,
|
|
),
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_create_datadog_logging_payload():
|
|
"""Test creating a DataDog logging payload from a standard logging object"""
|
|
dd_logger = DataDogLogger()
|
|
standard_payload = create_standard_logging_payload()
|
|
|
|
# Create mock kwargs with the standard logging object
|
|
kwargs = {"standard_logging_object": standard_payload}
|
|
|
|
# Test payload creation
|
|
dd_payload = dd_logger.create_datadog_logging_payload(
|
|
kwargs=kwargs,
|
|
response_obj=None,
|
|
start_time=datetime.now(),
|
|
end_time=datetime.now(),
|
|
)
|
|
|
|
# Verify payload structure
|
|
assert dd_payload["ddsource"] == os.getenv("DD_SOURCE", "litellm")
|
|
assert dd_payload["service"] == "litellm-server"
|
|
assert dd_payload["status"] == DataDogStatus.INFO
|
|
|
|
# verify the message field == standard_payload
|
|
dict_payload = json.loads(dd_payload["message"])
|
|
assert dict_payload == standard_payload
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_datadog_failure_logging():
|
|
"""Test logging a failure event to DataDog"""
|
|
dd_logger = DataDogLogger()
|
|
standard_payload = create_standard_logging_payload()
|
|
standard_payload["status"] = "failure" # Set status to failure
|
|
standard_payload["error_str"] = "Test error"
|
|
|
|
kwargs = {"standard_logging_object": standard_payload}
|
|
|
|
dd_payload = dd_logger.create_datadog_logging_payload(
|
|
kwargs=kwargs,
|
|
response_obj=None,
|
|
start_time=datetime.now(),
|
|
end_time=datetime.now(),
|
|
)
|
|
|
|
assert (
|
|
dd_payload["status"] == DataDogStatus.ERROR
|
|
) # Verify failure maps to warning status
|
|
|
|
# verify the message field == standard_payload
|
|
dict_payload = json.loads(dd_payload["message"])
|
|
assert dict_payload == standard_payload
|
|
|
|
# verify error_str is in the message field
|
|
assert "error_str" in dict_payload
|
|
assert dict_payload["error_str"] == "Test error"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_datadog_logging_http_request():
|
|
"""
|
|
- Test that the HTTP request is made to Datadog
|
|
- sent to the /api/v2/logs endpoint
|
|
- the payload is batched
|
|
- each element in the payload is a DatadogPayload
|
|
- each element in a DatadogPayload.message contains all the valid fields
|
|
"""
|
|
try:
|
|
from litellm.integrations.datadog.datadog import DataDogLogger
|
|
|
|
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
|
|
os.environ["DD_API_KEY"] = "anything"
|
|
dd_logger = DataDogLogger()
|
|
|
|
litellm.callbacks = [dd_logger]
|
|
|
|
litellm.set_verbose = True
|
|
|
|
# Create a mock for the async_client's post method
|
|
mock_post = AsyncMock()
|
|
mock_post.return_value.status_code = 202
|
|
mock_post.return_value.text = "Accepted"
|
|
dd_logger.async_client.post = mock_post
|
|
|
|
# Make the completion call
|
|
for _ in range(5):
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "what llm are u"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
mock_response="Accepted",
|
|
)
|
|
print(response)
|
|
|
|
# Wait for 5 seconds
|
|
await asyncio.sleep(6)
|
|
|
|
# Assert that the mock was called
|
|
assert mock_post.called, "HTTP request was not made"
|
|
|
|
# Get the arguments of the last call
|
|
args, kwargs = mock_post.call_args
|
|
|
|
print("CAll args and kwargs", args, kwargs)
|
|
|
|
# Print the request body
|
|
|
|
# You can add more specific assertions here if needed
|
|
# For example, checking if the URL is correct
|
|
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
|
|
|
|
body = kwargs["data"]
|
|
|
|
# use gzip to unzip the body
|
|
with gzip.open(io.BytesIO(body), "rb") as f:
|
|
body = f.read().decode("utf-8")
|
|
print(body)
|
|
|
|
# body is string parse it to dict
|
|
body = json.loads(body)
|
|
print(body)
|
|
|
|
assert len(body) == 5 # 5 logs should be sent to DataDog
|
|
|
|
# Assert that the first element in body has the expected fields and shape
|
|
assert isinstance(body[0], dict), "First element in body should be a dictionary"
|
|
|
|
# Get the expected fields and their types from DatadogPayload
|
|
expected_fields = DatadogPayload.__annotations__
|
|
# Assert that all elements in body have the fields of DatadogPayload with correct types
|
|
for log in body:
|
|
assert isinstance(log, dict), "Each log should be a dictionary"
|
|
for field, expected_type in expected_fields.items():
|
|
assert field in log, f"Field '{field}' is missing from the log"
|
|
assert isinstance(
|
|
log[field], expected_type
|
|
), f"Field '{field}' has incorrect type. Expected {expected_type}, got {type(log[field])}"
|
|
|
|
# Additional assertion to ensure no extra fields are present
|
|
for log in body:
|
|
assert set(log.keys()) == set(
|
|
expected_fields.keys()
|
|
), f"Log contains unexpected fields: {set(log.keys()) - set(expected_fields.keys())}"
|
|
|
|
# Parse the 'message' field as JSON and check its structure
|
|
message = json.loads(body[0]["message"])
|
|
print("logged message", json.dumps(message, indent=4))
|
|
|
|
expected_message_fields = StandardLoggingPayload.__annotations__.keys()
|
|
|
|
for field in expected_message_fields:
|
|
assert field in message, f"Field '{field}' is missing from the message"
|
|
|
|
# Check specific fields
|
|
assert message["call_type"] == "acompletion"
|
|
assert message["model"] == "gpt-3.5-turbo"
|
|
assert isinstance(message["model_parameters"], dict)
|
|
assert "temperature" in message["model_parameters"]
|
|
assert "max_tokens" in message["model_parameters"]
|
|
assert isinstance(message["response"], dict)
|
|
assert isinstance(message["metadata"], dict)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Test failed with exception: {str(e)}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_datadog_log_redis_failures():
|
|
"""
|
|
Test that poorly configured Redis is logged as Warning on DataDog
|
|
"""
|
|
try:
|
|
from litellm.caching.caching import Cache
|
|
from litellm.integrations.datadog.datadog import DataDogLogger
|
|
|
|
litellm.cache = Cache(
|
|
type="redis", host="badhost", port="6379", password="badpassword"
|
|
)
|
|
|
|
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
|
|
os.environ["DD_API_KEY"] = "anything"
|
|
dd_logger = DataDogLogger()
|
|
|
|
litellm.callbacks = [dd_logger]
|
|
litellm.service_callback = ["datadog"]
|
|
|
|
litellm.set_verbose = True
|
|
|
|
# Create a mock for the async_client's post method
|
|
mock_post = AsyncMock()
|
|
mock_post.return_value.status_code = 202
|
|
mock_post.return_value.text = "Accepted"
|
|
dd_logger.async_client.post = mock_post
|
|
|
|
# Make the completion call
|
|
for _ in range(3):
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "what llm are u"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
mock_response="Accepted",
|
|
)
|
|
print(response)
|
|
|
|
# Wait for 5 seconds
|
|
await asyncio.sleep(6)
|
|
|
|
# Assert that the mock was called
|
|
assert mock_post.called, "HTTP request was not made"
|
|
|
|
# Get the arguments of the last call
|
|
args, kwargs = mock_post.call_args
|
|
print("CAll args and kwargs", args, kwargs)
|
|
|
|
# For example, checking if the URL is correct
|
|
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
|
|
|
|
body = kwargs["data"]
|
|
|
|
# use gzip to unzip the body
|
|
with gzip.open(io.BytesIO(body), "rb") as f:
|
|
body = f.read().decode("utf-8")
|
|
print(body)
|
|
|
|
# body is string parse it to dict
|
|
body = json.loads(body)
|
|
print(body)
|
|
|
|
failure_events = [log for log in body if log["status"] == "warning"]
|
|
assert len(failure_events) > 0, "No failure events logged"
|
|
|
|
print("ALL FAILURE/WARN EVENTS", failure_events)
|
|
|
|
for event in failure_events:
|
|
message = json.loads(event["message"])
|
|
assert (
|
|
event["status"] == "warning"
|
|
), f"Event status is not 'warning': {event['status']}"
|
|
assert (
|
|
message["service"] == "redis"
|
|
), f"Service is not 'redis': {message['service']}"
|
|
assert "error" in message, "No 'error' field in the message"
|
|
assert message["error"], "Error field is empty"
|
|
except Exception as e:
|
|
pytest.fail(f"Test failed with exception: {str(e)}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.skip(reason="local-only test, to test if everything works fine.")
|
|
async def test_datadog_logging():
|
|
try:
|
|
litellm.success_callback = ["datadog"]
|
|
litellm.set_verbose = True
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "what llm are u"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
)
|
|
print(response)
|
|
|
|
await asyncio.sleep(5)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_datadog_payload_environment_variables():
|
|
"""Test that DataDog payload correctly includes environment variables in the payload structure"""
|
|
try:
|
|
# Set test environment variables
|
|
test_env = {
|
|
"DD_ENV": "test-env",
|
|
"DD_SERVICE": "test-service",
|
|
"DD_VERSION": "1.0.0",
|
|
"DD_SOURCE": "test-source",
|
|
"DD_API_KEY": "fake-key",
|
|
"DD_SITE": "datadoghq.com",
|
|
}
|
|
|
|
with patch.dict(os.environ, test_env):
|
|
dd_logger = DataDogLogger()
|
|
standard_payload = create_standard_logging_payload()
|
|
|
|
# Create the payload
|
|
dd_payload = dd_logger.create_datadog_logging_payload(
|
|
kwargs={"standard_logging_object": standard_payload},
|
|
response_obj=None,
|
|
start_time=datetime.now(),
|
|
end_time=datetime.now(),
|
|
)
|
|
|
|
print("dd payload=", json.dumps(dd_payload, indent=2))
|
|
|
|
# Verify payload structure and environment variables
|
|
assert (
|
|
dd_payload["ddsource"] == "test-source"
|
|
), "Incorrect source in payload"
|
|
assert (
|
|
dd_payload["service"] == "test-service"
|
|
), "Incorrect service in payload"
|
|
|
|
assert (
|
|
"env:test-env,service:test-service,version:1.0.0,HOSTNAME:"
|
|
in dd_payload["ddtags"]
|
|
), "Incorrect tags in payload"
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Test failed with exception: {str(e)}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_datadog_payload_content_truncation():
|
|
"""
|
|
Test that DataDog payload correctly truncates long content
|
|
|
|
DataDog has a limit of 1MB for the logged payload size.
|
|
"""
|
|
dd_logger = DataDogLogger()
|
|
|
|
# Create a standard payload with very long content
|
|
standard_payload = create_standard_logging_payload()
|
|
long_content = "x" * 80_000 # Create string longer than MAX_STR_LENGTH (10_000)
|
|
|
|
# Modify payload with long content
|
|
standard_payload["error_str"] = long_content
|
|
standard_payload["messages"] = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": long_content,
|
|
"detail": "low",
|
|
},
|
|
}
|
|
],
|
|
}
|
|
]
|
|
standard_payload["response"] = {"choices": [{"message": {"content": long_content}}]}
|
|
|
|
# Create the payload
|
|
dd_payload = dd_logger.create_datadog_logging_payload(
|
|
kwargs={"standard_logging_object": standard_payload},
|
|
response_obj=None,
|
|
start_time=datetime.now(),
|
|
end_time=datetime.now(),
|
|
)
|
|
|
|
print("dd_payload", json.dumps(dd_payload, indent=2))
|
|
|
|
# Parse the message back to dict to verify truncation
|
|
message_dict = json.loads(dd_payload["message"])
|
|
|
|
# Verify truncation of fields
|
|
assert len(message_dict["error_str"]) < 10_100, "error_str not truncated correctly"
|
|
assert (
|
|
len(str(message_dict["messages"])) < 10_100
|
|
), "messages not truncated correctly"
|
|
assert (
|
|
len(str(message_dict["response"])) < 10_100
|
|
), "response not truncated correctly"
|
|
|
|
|
|
def test_datadog_static_methods():
|
|
"""Test the static helper methods in DataDogLogger class"""
|
|
|
|
# Test with default environment variables
|
|
assert DataDogLogger._get_datadog_source() == "litellm"
|
|
assert DataDogLogger._get_datadog_service() == "litellm-server"
|
|
assert DataDogLogger._get_datadog_hostname() is not None
|
|
assert DataDogLogger._get_datadog_env() == "unknown"
|
|
assert DataDogLogger._get_datadog_pod_name() == "unknown"
|
|
|
|
# Test tags format with default values
|
|
assert (
|
|
"env:unknown,service:litellm,version:unknown,HOSTNAME:"
|
|
in DataDogLogger._get_datadog_tags()
|
|
)
|
|
|
|
# Test with custom environment variables
|
|
test_env = {
|
|
"DD_SOURCE": "custom-source",
|
|
"DD_SERVICE": "custom-service",
|
|
"HOSTNAME": "test-host",
|
|
"DD_ENV": "production",
|
|
"DD_VERSION": "1.0.0",
|
|
"POD_NAME": "pod-123",
|
|
}
|
|
|
|
with patch.dict(os.environ, test_env):
|
|
assert DataDogLogger._get_datadog_source() == "custom-source"
|
|
print(
|
|
"DataDogLogger._get_datadog_source()", DataDogLogger._get_datadog_source()
|
|
)
|
|
assert DataDogLogger._get_datadog_service() == "custom-service"
|
|
print(
|
|
"DataDogLogger._get_datadog_service()", DataDogLogger._get_datadog_service()
|
|
)
|
|
assert DataDogLogger._get_datadog_hostname() == "test-host"
|
|
print(
|
|
"DataDogLogger._get_datadog_hostname()",
|
|
DataDogLogger._get_datadog_hostname(),
|
|
)
|
|
assert DataDogLogger._get_datadog_env() == "production"
|
|
print("DataDogLogger._get_datadog_env()", DataDogLogger._get_datadog_env())
|
|
assert DataDogLogger._get_datadog_pod_name() == "pod-123"
|
|
print(
|
|
"DataDogLogger._get_datadog_pod_name()",
|
|
DataDogLogger._get_datadog_pod_name(),
|
|
)
|
|
|
|
# Test tags format with custom values
|
|
expected_custom_tags = "env:production,service:custom-service,version:1.0.0,HOSTNAME:test-host,POD_NAME:pod-123"
|
|
print("DataDogLogger._get_datadog_tags()", DataDogLogger._get_datadog_tags())
|
|
assert DataDogLogger._get_datadog_tags() == expected_custom_tags
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_datadog_non_serializable_messages():
|
|
"""Test logging events with non-JSON-serializable messages"""
|
|
dd_logger = DataDogLogger()
|
|
|
|
# Create payload with non-serializable content
|
|
standard_payload = create_standard_logging_payload()
|
|
non_serializable_obj = datetime.now() # datetime objects aren't JSON serializable
|
|
standard_payload["messages"] = [{"role": "user", "content": non_serializable_obj}]
|
|
standard_payload["response"] = {
|
|
"choices": [{"message": {"content": non_serializable_obj}}]
|
|
}
|
|
|
|
kwargs = {"standard_logging_object": standard_payload}
|
|
|
|
# Test payload creation
|
|
dd_payload = dd_logger.create_datadog_logging_payload(
|
|
kwargs=kwargs,
|
|
response_obj=None,
|
|
start_time=datetime.now(),
|
|
end_time=datetime.now(),
|
|
)
|
|
|
|
# Verify payload can be serialized
|
|
assert dd_payload["status"] == DataDogStatus.INFO
|
|
|
|
# Verify the message can be parsed back to dict
|
|
dict_payload = json.loads(dd_payload["message"])
|
|
|
|
# Check that the non-serializable objects were converted to strings
|
|
assert isinstance(dict_payload["messages"][0]["content"], str)
|
|
assert isinstance(dict_payload["response"]["choices"][0]["message"]["content"], str)
|
|
|
|
|
|
def test_get_datadog_tags():
|
|
"""Test the _get_datadog_tags static method with various inputs"""
|
|
# Test with no standard_logging_object and default env vars
|
|
base_tags = DataDogLogger._get_datadog_tags()
|
|
assert "env:" in base_tags
|
|
assert "service:" in base_tags
|
|
assert "version:" in base_tags
|
|
assert "POD_NAME:" in base_tags
|
|
assert "HOSTNAME:" in base_tags
|
|
|
|
# Test with custom env vars
|
|
test_env = {
|
|
"DD_ENV": "production",
|
|
"DD_SERVICE": "custom-service",
|
|
"DD_VERSION": "1.0.0",
|
|
"HOSTNAME": "test-host",
|
|
"POD_NAME": "pod-123",
|
|
}
|
|
with patch.dict(os.environ, test_env):
|
|
custom_tags = DataDogLogger._get_datadog_tags()
|
|
assert "env:production" in custom_tags
|
|
assert "service:custom-service" in custom_tags
|
|
assert "version:1.0.0" in custom_tags
|
|
assert "HOSTNAME:test-host" in custom_tags
|
|
assert "POD_NAME:pod-123" in custom_tags
|
|
|
|
# Test with standard_logging_object containing request_tags
|
|
standard_logging_obj = create_standard_logging_payload()
|
|
standard_logging_obj["request_tags"] = ["tag1", "tag2"]
|
|
|
|
tags_with_request = DataDogLogger._get_datadog_tags(standard_logging_obj)
|
|
assert "request_tag:tag1" in tags_with_request
|
|
assert "request_tag:tag2" in tags_with_request
|
|
|
|
# Test with empty request_tags
|
|
standard_logging_obj["request_tags"] = []
|
|
tags_empty_request = DataDogLogger._get_datadog_tags(standard_logging_obj)
|
|
assert "request_tag:" not in tags_empty_request
|
|
|
|
# Test with None request_tags
|
|
standard_logging_obj["request_tags"] = None
|
|
tags_none_request = DataDogLogger._get_datadog_tags(standard_logging_obj)
|
|
assert "request_tag:" not in tags_none_request
|