mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
* refactor: introduce new transformation config for gpt-4o-transcribe models * refactor: expose new transformation configs for audio transcription * ci: fix config yml * feat(openai/transcriptions): support provider config transformation on openai audio transcriptions allows gpt-4o and whisper audio transformation to work as expected * refactor: migrate fireworks ai + deepgram to new transform request pattern * feat(openai/): working support for gpt-4o-audio-transcribe * build(model_prices_and_context_window.json): add gpt-4o-transcribe to model cost map * build(model_prices_and_context_window.json): specify what endpoints are supported for `/audio/transcriptions` * fix(get_supported_openai_params.py): fix return * refactor(deepgram/): migrate unit test to deepgram handler * refactor: cleanup unused imports * fix(get_supported_openai_params.py): fix linting error * test: update test
166 lines
4.3 KiB
Python
166 lines
4.3 KiB
Python
# What is this?
|
|
## Tests `litellm.transcription` endpoint. Outside litellm module b/c of audio file used in testing (it's ~700kb).
|
|
|
|
import asyncio
|
|
import logging
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
from typing import Optional
|
|
|
|
import aiohttp
|
|
import dotenv
|
|
import pytest
|
|
from dotenv import load_dotenv
|
|
from openai import AsyncOpenAI
|
|
|
|
import litellm
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
|
|
# Get the current directory of the file being run
|
|
pwd = os.path.dirname(os.path.realpath(__file__))
|
|
print(pwd)
|
|
|
|
file_path = os.path.join(pwd, "gettysburg.wav")
|
|
|
|
audio_file = open(file_path, "rb")
|
|
|
|
|
|
file2_path = os.path.join(pwd, "eagle.wav")
|
|
audio_file2 = open(file2_path, "rb")
|
|
|
|
load_dotenv()
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../")
|
|
) # Adds the parent directory to the system path
|
|
import litellm
|
|
from litellm import Router
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, api_key, api_base",
|
|
[
|
|
("whisper-1", None, None),
|
|
# ("groq/whisper-large-v3", None, None),
|
|
(
|
|
"azure/azure-whisper",
|
|
os.getenv("AZURE_EUROPE_API_KEY"),
|
|
"https://my-endpoint-europe-berri-992.openai.azure.com/",
|
|
),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"response_format, timestamp_granularities",
|
|
[("json", None), ("vtt", None), ("verbose_json", ["word"])],
|
|
)
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_transcription(
|
|
model, api_key, api_base, response_format, timestamp_granularities
|
|
):
|
|
transcript = await litellm.atranscription(
|
|
model=model,
|
|
file=audio_file,
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
response_format=response_format,
|
|
drop_params=True,
|
|
)
|
|
print(f"transcript: {transcript.model_dump()}")
|
|
print(f"transcript hidden params: {transcript._hidden_params}")
|
|
|
|
assert transcript.text is not None
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_transcription_caching():
|
|
import litellm
|
|
from litellm.caching.caching import Cache
|
|
|
|
litellm.set_verbose = True
|
|
litellm.cache = Cache()
|
|
|
|
# make raw llm api call
|
|
|
|
response_1 = await litellm.atranscription(
|
|
model="whisper-1",
|
|
file=audio_file,
|
|
)
|
|
|
|
await asyncio.sleep(5)
|
|
|
|
# cache hit
|
|
|
|
response_2 = await litellm.atranscription(
|
|
model="whisper-1",
|
|
file=audio_file,
|
|
)
|
|
|
|
print("response_1", response_1)
|
|
print("response_2", response_2)
|
|
print("response2 hidden params", response_2._hidden_params)
|
|
assert response_2._hidden_params["cache_hit"] is True
|
|
|
|
# cache miss
|
|
|
|
response_3 = await litellm.atranscription(
|
|
model="whisper-1",
|
|
file=audio_file2,
|
|
)
|
|
print("response_3", response_3)
|
|
print("response3 hidden params", response_3._hidden_params)
|
|
assert response_3._hidden_params.get("cache_hit") is not True
|
|
assert response_3.text != response_2.text
|
|
|
|
litellm.cache = None
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_whisper_log_pre_call():
|
|
from litellm.litellm_core_utils.litellm_logging import Logging
|
|
from datetime import datetime
|
|
from unittest.mock import patch, MagicMock
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
|
|
custom_logger = CustomLogger()
|
|
|
|
litellm.callbacks = [custom_logger]
|
|
|
|
with patch.object(custom_logger, "log_pre_api_call") as mock_log_pre_call:
|
|
await litellm.atranscription(
|
|
model="whisper-1",
|
|
file=audio_file,
|
|
)
|
|
mock_log_pre_call.assert_called_once()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_whisper_log_pre_call():
|
|
from litellm.litellm_core_utils.litellm_logging import Logging
|
|
from datetime import datetime
|
|
from unittest.mock import patch, MagicMock
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
|
|
custom_logger = CustomLogger()
|
|
|
|
litellm.callbacks = [custom_logger]
|
|
|
|
with patch.object(custom_logger, "log_pre_api_call") as mock_log_pre_call:
|
|
await litellm.atranscription(
|
|
model="whisper-1",
|
|
file=audio_file,
|
|
)
|
|
mock_log_pre_call.assert_called_once()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_gpt_4o_transcribe():
|
|
from litellm.litellm_core_utils.litellm_logging import Logging
|
|
from datetime import datetime
|
|
from unittest.mock import patch, MagicMock
|
|
|
|
await litellm.atranscription(
|
|
model="openai/gpt-4o-transcribe", file=audio_file, response_format="json"
|
|
)
|