mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
464 lines
15 KiB
Python
464 lines
15 KiB
Python
import os, types
|
|
from enum import Enum
|
|
import json
|
|
import requests
|
|
import time
|
|
from typing import Callable, Optional, Any
|
|
import litellm
|
|
from litellm.utils import ModelResponse, EmbeddingResponse, get_secret, Usage
|
|
import sys
|
|
from copy import deepcopy
|
|
import httpx
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
|
|
|
|
|
class SagemakerError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker"
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
import io
|
|
import json
|
|
|
|
|
|
class TokenIterator:
|
|
def __init__(self, stream):
|
|
self.byte_iterator = iter(stream)
|
|
self.buffer = io.BytesIO()
|
|
self.read_pos = 0
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
while True:
|
|
self.buffer.seek(self.read_pos)
|
|
line = self.buffer.readline()
|
|
if line and line[-1] == ord("\n"):
|
|
self.read_pos += len(line) + 1
|
|
full_line = line[:-1].decode("utf-8")
|
|
line_data = json.loads(full_line.lstrip("data:").rstrip("/n"))
|
|
return line_data["token"]["text"]
|
|
chunk = next(self.byte_iterator)
|
|
self.buffer.seek(0, io.SEEK_END)
|
|
self.buffer.write(chunk["PayloadPart"]["Bytes"])
|
|
|
|
|
|
class SagemakerConfig:
|
|
"""
|
|
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
|
|
"""
|
|
|
|
max_new_tokens: Optional[int] = None
|
|
top_p: Optional[float] = None
|
|
temperature: Optional[float] = None
|
|
return_full_text: Optional[bool] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_new_tokens: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
temperature: Optional[float] = None,
|
|
return_full_text: Optional[bool] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
|
|
"""
|
|
SAGEMAKER AUTH Keys/Vars
|
|
os.environ['AWS_ACCESS_KEY_ID'] = ""
|
|
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
|
|
"""
|
|
|
|
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
|
|
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
custom_prompt_dict={},
|
|
hf_model_name=None,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
import boto3
|
|
|
|
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
|
|
|
if aws_access_key_id != None:
|
|
# uses auth params passed to completion
|
|
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
|
|
client = boto3.client(
|
|
service_name="sagemaker-runtime",
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
region_name=aws_region_name,
|
|
)
|
|
else:
|
|
# aws_access_key_id is None, assume user is trying to auth using env variables
|
|
# boto3 automaticaly reads env variables
|
|
|
|
# we need to read region name from env
|
|
# I assume majority of users use .env for auth
|
|
region_name = (
|
|
get_secret("AWS_REGION_NAME")
|
|
or "us-west-2" # default to us-west-2 if user not specified
|
|
)
|
|
client = boto3.client(
|
|
service_name="sagemaker-runtime",
|
|
region_name=region_name,
|
|
)
|
|
|
|
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
|
|
inference_params = deepcopy(optional_params)
|
|
|
|
## Load Config
|
|
config = litellm.SagemakerConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in inference_params
|
|
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
|
|
model = model
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", None),
|
|
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
|
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
|
messages=messages,
|
|
)
|
|
else:
|
|
if hf_model_name is None:
|
|
if "llama-2" in model.lower(): # llama-2 model
|
|
if "chat" in model.lower(): # apply llama2 chat template
|
|
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
|
|
else: # apply regular llama2 template
|
|
hf_model_name = "meta-llama/Llama-2-7b"
|
|
hf_model_name = (
|
|
hf_model_name or model
|
|
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
|
|
prompt = prompt_factory(model=hf_model_name, messages=messages)
|
|
stream = inference_params.pop("stream", None)
|
|
if stream == True:
|
|
data = json.dumps(
|
|
{"inputs": prompt, "parameters": inference_params, "stream": True}
|
|
).encode("utf-8")
|
|
## LOGGING
|
|
request_str = f"""
|
|
response = client.invoke_endpoint_with_response_stream(
|
|
EndpointName={model},
|
|
ContentType="application/json",
|
|
Body={data},
|
|
CustomAttributes="accept_eula=true",
|
|
)
|
|
""" # type: ignore
|
|
response = client.invoke_endpoint_with_response_stream(
|
|
EndpointName=model,
|
|
ContentType="application/json",
|
|
Body=data,
|
|
CustomAttributes="accept_eula=true",
|
|
)
|
|
|
|
return response["Body"]
|
|
|
|
data = json.dumps({"inputs": prompt, "parameters": inference_params}).encode(
|
|
"utf-8"
|
|
)
|
|
|
|
## LOGGING
|
|
request_str = f"""
|
|
response = client.invoke_endpoint(
|
|
EndpointName={model},
|
|
ContentType="application/json",
|
|
Body={data},
|
|
CustomAttributes="accept_eula=true",
|
|
)
|
|
""" # type: ignore
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key="",
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"request_str": request_str,
|
|
"hf_model_name": hf_model_name,
|
|
},
|
|
)
|
|
## COMPLETION CALL
|
|
try:
|
|
response = client.invoke_endpoint(
|
|
EndpointName=model,
|
|
ContentType="application/json",
|
|
Body=data,
|
|
CustomAttributes="accept_eula=true",
|
|
)
|
|
except Exception as e:
|
|
status_code = (
|
|
getattr(e, "response", {})
|
|
.get("ResponseMetadata", {})
|
|
.get("HTTPStatusCode", 500)
|
|
)
|
|
error_message = (
|
|
getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
|
|
)
|
|
raise SagemakerError(status_code=status_code, message=error_message)
|
|
|
|
response = response["Body"].read().decode("utf8")
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key="",
|
|
original_response=response,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response}")
|
|
## RESPONSE OBJECT
|
|
completion_response = json.loads(response)
|
|
try:
|
|
completion_response_choices = completion_response[0]
|
|
completion_output = ""
|
|
if "generation" in completion_response_choices:
|
|
completion_output += completion_response_choices["generation"]
|
|
elif "generated_text" in completion_response_choices:
|
|
completion_output += completion_response_choices["generated_text"]
|
|
|
|
# check if the prompt template is part of output, if so - filter it out
|
|
if completion_output.startswith(prompt) and "<s>" in prompt:
|
|
completion_output = completion_output.replace(prompt, "", 1)
|
|
|
|
model_response["choices"][0]["message"]["content"] = completion_output
|
|
except:
|
|
raise SagemakerError(
|
|
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
|
|
status_code=500,
|
|
)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
)
|
|
|
|
model_response["created"] = int(time.time())
|
|
model_response["model"] = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
model_response.usage = usage
|
|
return model_response
|
|
|
|
|
|
# async def acompletion(
|
|
# client: Any,
|
|
# model_response: ModelResponse,
|
|
# model: str,
|
|
# logging_obj: Any,
|
|
# data: dict,
|
|
# hf_model_name: str,
|
|
# ):
|
|
# """
|
|
# Use boto3 create_invocation_async endpoint
|
|
# """
|
|
# ## LOGGING
|
|
# request_str = f"""
|
|
# response = client.invoke_endpoint(
|
|
# EndpointName={model},
|
|
# ContentType="application/json",
|
|
# Body={data},
|
|
# CustomAttributes="accept_eula=true",
|
|
# )
|
|
# """ # type: ignore
|
|
# logging_obj.pre_call(
|
|
# input=data["prompt"],
|
|
# api_key="",
|
|
# additional_args={
|
|
# "complete_input_dict": data,
|
|
# "request_str": request_str,
|
|
# "hf_model_name": hf_model_name,
|
|
# },
|
|
# )
|
|
# ## COMPLETION CALL
|
|
# try:
|
|
# response = client.invoke_endpoint(
|
|
# EndpointName=model,
|
|
# ContentType="application/json",
|
|
# Body=data,
|
|
# CustomAttributes="accept_eula=true",
|
|
# )
|
|
# except Exception as e:
|
|
# raise SagemakerError(status_code=500, message=f"{str(e)}")
|
|
|
|
|
|
def embedding(
|
|
model: str,
|
|
input: list,
|
|
model_response: EmbeddingResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
custom_prompt_dict={},
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
"""
|
|
Supports Huggingface Jumpstart embeddings like GPT-6B
|
|
"""
|
|
### BOTO3 INIT
|
|
import boto3
|
|
|
|
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
|
|
|
if aws_access_key_id != None:
|
|
# uses auth params passed to completion
|
|
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
|
|
client = boto3.client(
|
|
service_name="sagemaker-runtime",
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
region_name=aws_region_name,
|
|
)
|
|
else:
|
|
# aws_access_key_id is None, assume user is trying to auth using env variables
|
|
# boto3 automaticaly reads env variables
|
|
|
|
# we need to read region name from env
|
|
# I assume majority of users use .env for auth
|
|
region_name = (
|
|
get_secret("AWS_REGION_NAME")
|
|
or "us-west-2" # default to us-west-2 if user not specified
|
|
)
|
|
client = boto3.client(
|
|
service_name="sagemaker-runtime",
|
|
region_name=region_name,
|
|
)
|
|
|
|
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
|
|
inference_params = deepcopy(optional_params)
|
|
inference_params.pop("stream", None)
|
|
|
|
## Load Config
|
|
config = litellm.SagemakerConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in inference_params
|
|
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
|
|
#### HF EMBEDDING LOGIC
|
|
data = json.dumps({"text_inputs": input}).encode("utf-8")
|
|
|
|
## LOGGING
|
|
request_str = f"""
|
|
response = client.invoke_endpoint(
|
|
EndpointName={model},
|
|
ContentType="application/json",
|
|
Body={data},
|
|
CustomAttributes="accept_eula=true",
|
|
)""" # type: ignore
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key="",
|
|
additional_args={"complete_input_dict": data, "request_str": request_str},
|
|
)
|
|
## EMBEDDING CALL
|
|
try:
|
|
response = client.invoke_endpoint(
|
|
EndpointName=model,
|
|
ContentType="application/json",
|
|
Body=data,
|
|
CustomAttributes="accept_eula=true",
|
|
)
|
|
except Exception as e:
|
|
status_code = (
|
|
getattr(e, "response", {})
|
|
.get("ResponseMetadata", {})
|
|
.get("HTTPStatusCode", 500)
|
|
)
|
|
error_message = (
|
|
getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
|
|
)
|
|
raise SagemakerError(status_code=status_code, message=error_message)
|
|
|
|
response = json.loads(response["Body"].read().decode("utf8"))
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key="",
|
|
original_response=response,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
print_verbose(f"raw model_response: {response}")
|
|
if "embedding" not in response:
|
|
raise SagemakerError(status_code=500, message="embedding not found in response")
|
|
embeddings = response["embedding"]
|
|
|
|
if not isinstance(embeddings, list):
|
|
raise SagemakerError(
|
|
status_code=422, message=f"Response not in expected format - {embeddings}"
|
|
)
|
|
|
|
output_data = []
|
|
for idx, embedding in enumerate(embeddings):
|
|
output_data.append(
|
|
{"object": "embedding", "index": idx, "embedding": embedding}
|
|
)
|
|
|
|
model_response["object"] = "list"
|
|
model_response["data"] = output_data
|
|
model_response["model"] = model
|
|
|
|
input_tokens = 0
|
|
for text in input:
|
|
input_tokens += len(encoding.encode(text))
|
|
|
|
model_response["usage"] = Usage(
|
|
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
|
|
)
|
|
|
|
return model_response
|