mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
* remove unused imports * fix AmazonConverseConfig * fix test * fix import * ruff check fixes * test fixes * fix testing * fix imports
157 lines
5.6 KiB
Python
157 lines
5.6 KiB
Python
import os
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_logger
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
get_async_httpx_client,
|
|
httpxSpecialProvider,
|
|
)
|
|
|
|
|
|
# from here: https://docs.rungalileo.io/galileo/gen-ai-studio-products/galileo-observe/how-to/logging-data-via-restful-apis#structuring-your-records
|
|
class LLMResponse(BaseModel):
|
|
latency_ms: int
|
|
status_code: int
|
|
input_text: str
|
|
output_text: str
|
|
node_type: str
|
|
model: str
|
|
num_input_tokens: int
|
|
num_output_tokens: int
|
|
output_logprobs: Optional[Dict[str, Any]] = Field(
|
|
default=None,
|
|
description="Optional. When available, logprobs are used to compute Uncertainty.",
|
|
)
|
|
created_at: str = Field(
|
|
..., description='timestamp constructed in "%Y-%m-%dT%H:%M:%S" format'
|
|
)
|
|
tags: Optional[List[str]] = None
|
|
user_metadata: Optional[Dict[str, Any]] = None
|
|
|
|
|
|
class GalileoObserve(CustomLogger):
|
|
def __init__(self) -> None:
|
|
self.in_memory_records: List[dict] = []
|
|
self.batch_size = 1
|
|
self.base_url = os.getenv("GALILEO_BASE_URL", None)
|
|
self.project_id = os.getenv("GALILEO_PROJECT_ID", None)
|
|
self.headers: Optional[Dict[str, str]] = None
|
|
self.async_httpx_handler = get_async_httpx_client(
|
|
llm_provider=httpxSpecialProvider.LoggingCallback
|
|
)
|
|
pass
|
|
|
|
def set_galileo_headers(self):
|
|
# following https://docs.rungalileo.io/galileo/gen-ai-studio-products/galileo-observe/how-to/logging-data-via-restful-apis#logging-your-records
|
|
|
|
headers = {
|
|
"accept": "application/json",
|
|
"Content-Type": "application/x-www-form-urlencoded",
|
|
}
|
|
galileo_login_response = litellm.module_level_client.post(
|
|
url=f"{self.base_url}/login",
|
|
headers=headers,
|
|
data={
|
|
"username": os.getenv("GALILEO_USERNAME"),
|
|
"password": os.getenv("GALILEO_PASSWORD"),
|
|
},
|
|
)
|
|
|
|
access_token = galileo_login_response.json()["access_token"]
|
|
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {access_token}",
|
|
}
|
|
|
|
def get_output_str_from_response(self, response_obj, kwargs):
|
|
output = None
|
|
if response_obj is not None and (
|
|
kwargs.get("call_type", None) == "embedding"
|
|
or isinstance(response_obj, litellm.EmbeddingResponse)
|
|
):
|
|
output = None
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.ModelResponse
|
|
):
|
|
output = response_obj["choices"][0]["message"].json()
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.TextCompletionResponse
|
|
):
|
|
output = response_obj.choices[0].text
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.ImageResponse
|
|
):
|
|
output = response_obj["data"]
|
|
|
|
return output
|
|
|
|
async def async_log_success_event(
|
|
self, kwargs: Any, response_obj: Any, start_time: Any, end_time: Any
|
|
):
|
|
verbose_logger.debug("On Async Success")
|
|
|
|
_latency_ms = int((end_time - start_time).total_seconds() * 1000)
|
|
_call_type = kwargs.get("call_type", "litellm")
|
|
input_text = litellm.utils.get_formatted_prompt(
|
|
data=kwargs, call_type=_call_type
|
|
)
|
|
|
|
_usage = response_obj.get("usage", {}) or {}
|
|
num_input_tokens = _usage.get("prompt_tokens", 0)
|
|
num_output_tokens = _usage.get("completion_tokens", 0)
|
|
|
|
output_text = self.get_output_str_from_response(
|
|
response_obj=response_obj, kwargs=kwargs
|
|
)
|
|
|
|
if output_text is not None:
|
|
request_record = LLMResponse(
|
|
latency_ms=_latency_ms,
|
|
status_code=200,
|
|
input_text=input_text,
|
|
output_text=output_text,
|
|
node_type=_call_type,
|
|
model=kwargs.get("model", "-"),
|
|
num_input_tokens=num_input_tokens,
|
|
num_output_tokens=num_output_tokens,
|
|
created_at=start_time.strftime(
|
|
"%Y-%m-%dT%H:%M:%S"
|
|
), # timestamp str constructed in "%Y-%m-%dT%H:%M:%S" format
|
|
)
|
|
|
|
# dump to dict
|
|
request_dict = request_record.model_dump()
|
|
self.in_memory_records.append(request_dict)
|
|
|
|
if len(self.in_memory_records) >= self.batch_size:
|
|
await self.flush_in_memory_records()
|
|
|
|
async def flush_in_memory_records(self):
|
|
verbose_logger.debug("flushing in memory records")
|
|
response = await self.async_httpx_handler.post(
|
|
url=f"{self.base_url}/projects/{self.project_id}/observe/ingest",
|
|
headers=self.headers,
|
|
json={"records": self.in_memory_records},
|
|
)
|
|
|
|
if response.status_code == 200:
|
|
verbose_logger.debug(
|
|
"Galileo Logger:successfully flushed in memory records"
|
|
)
|
|
self.in_memory_records = []
|
|
else:
|
|
verbose_logger.debug("Galileo Logger: failed to flush in memory records")
|
|
verbose_logger.debug(
|
|
"Galileo Logger error=%s, status code=%s",
|
|
response.text,
|
|
response.status_code,
|
|
)
|
|
|
|
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
verbose_logger.debug("On Async Failure")
|