litellm-mirror/litellm/llms/anthropic/common_utils.py
Krish Dholakia 9b0f871129
Add /vllm/* and /mistral/* passthrough endpoints (adds support for Mistral OCR via passthrough)
* feat(llm_passthrough_endpoints.py): support mistral passthrough

Closes https://github.com/BerriAI/litellm/issues/9051

* feat(llm_passthrough_endpoints.py): initial commit for adding vllm passthrough route

* feat(vllm/common_utils.py): add new vllm model info route

make it possible to use vllm passthrough route via factory function

* fix(llm_passthrough_endpoints.py): add all methods to vllm passthrough route

* fix: fix linting error

* fix: fix linting error

* fix: fix ruff check

* fix(proxy/_types.py): add new passthrough routes

* docs(config_settings.md): add mistral env vars to docs
2025-04-14 22:06:33 -07:00

221 lines
7.8 KiB
Python

"""
This file contains common utils for anthropic calls.
"""
from typing import Dict, List, Optional, Union
import httpx
import litellm
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.anthropic import AllAnthropicToolsValues
from litellm.types.llms.openai import AllMessageValues
class AnthropicError(BaseLLMException):
def __init__(
self,
status_code: int,
message,
headers: Optional[httpx.Headers] = None,
):
super().__init__(status_code=status_code, message=message, headers=headers)
class AnthropicModelInfo(BaseLLMModelInfo):
def is_cache_control_set(self, messages: List[AllMessageValues]) -> bool:
"""
Return if {"cache_control": ..} in message content block
Used to check if anthropic prompt caching headers need to be set.
"""
for message in messages:
if message.get("cache_control", None) is not None:
return True
_message_content = message.get("content")
if _message_content is not None and isinstance(_message_content, list):
for content in _message_content:
if "cache_control" in content:
return True
return False
def is_computer_tool_used(
self, tools: Optional[List[AllAnthropicToolsValues]]
) -> bool:
if tools is None:
return False
for tool in tools:
if "type" in tool and tool["type"].startswith("computer_"):
return True
return False
def is_pdf_used(self, messages: List[AllMessageValues]) -> bool:
"""
Set to true if media passed into messages.
"""
for message in messages:
if (
"content" in message
and message["content"] is not None
and isinstance(message["content"], list)
):
for content in message["content"]:
if "type" in content and content["type"] != "text":
return True
return False
def _get_user_anthropic_beta_headers(
self, anthropic_beta_header: Optional[str]
) -> Optional[List[str]]:
if anthropic_beta_header is None:
return None
return anthropic_beta_header.split(",")
def get_anthropic_headers(
self,
api_key: str,
anthropic_version: Optional[str] = None,
computer_tool_used: bool = False,
prompt_caching_set: bool = False,
pdf_used: bool = False,
is_vertex_request: bool = False,
user_anthropic_beta_headers: Optional[List[str]] = None,
) -> dict:
betas = set()
if prompt_caching_set:
betas.add("prompt-caching-2024-07-31")
if computer_tool_used:
betas.add("computer-use-2024-10-22")
if pdf_used:
betas.add("pdfs-2024-09-25")
headers = {
"anthropic-version": anthropic_version or "2023-06-01",
"x-api-key": api_key,
"accept": "application/json",
"content-type": "application/json",
}
if user_anthropic_beta_headers is not None:
betas.update(user_anthropic_beta_headers)
# Don't send any beta headers to Vertex, Vertex has failed requests when they are sent
if is_vertex_request is True:
pass
elif len(betas) > 0:
headers["anthropic-beta"] = ",".join(betas)
return headers
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> Dict:
if api_key is None:
raise litellm.AuthenticationError(
message="Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params. Please set `ANTHROPIC_API_KEY` in your environment vars",
llm_provider="anthropic",
model=model,
)
tools = optional_params.get("tools")
prompt_caching_set = self.is_cache_control_set(messages=messages)
computer_tool_used = self.is_computer_tool_used(tools=tools)
pdf_used = self.is_pdf_used(messages=messages)
user_anthropic_beta_headers = self._get_user_anthropic_beta_headers(
anthropic_beta_header=headers.get("anthropic-beta")
)
anthropic_headers = self.get_anthropic_headers(
computer_tool_used=computer_tool_used,
prompt_caching_set=prompt_caching_set,
pdf_used=pdf_used,
api_key=api_key,
is_vertex_request=optional_params.get("is_vertex_request", False),
user_anthropic_beta_headers=user_anthropic_beta_headers,
)
headers = {**headers, **anthropic_headers}
return headers
@staticmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
return (
api_base
or get_secret_str("ANTHROPIC_API_BASE")
or "https://api.anthropic.com"
)
@staticmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
return api_key or get_secret_str("ANTHROPIC_API_KEY")
@staticmethod
def get_base_model(model: Optional[str] = None) -> Optional[str]:
return model.replace("anthropic/", "") if model else None
def get_models(
self, api_key: Optional[str] = None, api_base: Optional[str] = None
) -> List[str]:
api_base = AnthropicModelInfo.get_api_base(api_base)
api_key = AnthropicModelInfo.get_api_key(api_key)
if api_base is None or api_key is None:
raise ValueError(
"ANTHROPIC_API_BASE or ANTHROPIC_API_KEY is not set. Please set the environment variable, to query Anthropic's `/models` endpoint."
)
response = litellm.module_level_client.get(
url=f"{api_base}/v1/models",
headers={"x-api-key": api_key, "anthropic-version": "2023-06-01"},
)
try:
response.raise_for_status()
except httpx.HTTPStatusError:
raise Exception(
f"Failed to fetch models from Anthropic. Status code: {response.status_code}, Response: {response.text}"
)
models = response.json()["data"]
litellm_model_names = []
for model in models:
stripped_model_name = model["id"]
litellm_model_name = "anthropic/" + stripped_model_name
litellm_model_names.append(litellm_model_name)
return litellm_model_names
def process_anthropic_headers(headers: Union[httpx.Headers, dict]) -> dict:
openai_headers = {}
if "anthropic-ratelimit-requests-limit" in headers:
openai_headers["x-ratelimit-limit-requests"] = headers[
"anthropic-ratelimit-requests-limit"
]
if "anthropic-ratelimit-requests-remaining" in headers:
openai_headers["x-ratelimit-remaining-requests"] = headers[
"anthropic-ratelimit-requests-remaining"
]
if "anthropic-ratelimit-tokens-limit" in headers:
openai_headers["x-ratelimit-limit-tokens"] = headers[
"anthropic-ratelimit-tokens-limit"
]
if "anthropic-ratelimit-tokens-remaining" in headers:
openai_headers["x-ratelimit-remaining-tokens"] = headers[
"anthropic-ratelimit-tokens-remaining"
]
llm_response_headers = {
"{}-{}".format("llm_provider", k): v for k, v in headers.items()
}
additional_headers = {**llm_response_headers, **openai_headers}
return additional_headers