mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* feat(hosted_vllm/chat/transformation.py): support calling vllm video url with openai 'file' message type allows switching between gemini/vllm easily * [WIP] redacted thinking tests (#9044) * WIP: redacted thinking tests * test: add test for redacted thinking in assistant message --------- Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com> * fix(anthropic/chat/transformation.py): support redacted thinking block on anthropic completion Fixes https://github.com/BerriAI/litellm/issues/9058 * fix(anthropic/chat/handler.py): transform anthropic redacted messages on streaming Fixes https://github.com/BerriAI/litellm/issues/9058 * fix(bedrock/): support redacted text on streaming + non-streaming Fixes https://github.com/BerriAI/litellm/issues/9058 * feat(litellm_proxy/chat/transformation.py): support 'reasoning_effort' param for proxy allows using reasoning effort with thinking models on proxy * test: update tests * fix(utils.py): fix linting error * fix: fix linting errors * fix: fix linting errors * fix: fix linting error * fix: fix linting errors * fix(anthropic/chat/transformation.py): fix returning citations in chat completion --------- Co-authored-by: Johann Miller <22018973+johannkm@users.noreply.github.com>
566 lines
20 KiB
Python
566 lines
20 KiB
Python
"""
|
|
Translates from OpenAI's `/v1/chat/completions` to Databricks' `/chat/completions`
|
|
"""
|
|
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
AsyncIterator,
|
|
Iterator,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
import httpx
|
|
from pydantic import BaseModel
|
|
|
|
from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
|
|
from litellm.litellm_core_utils.llm_response_utils.convert_dict_to_response import (
|
|
_handle_invalid_parallel_tool_calls,
|
|
_should_convert_tool_call_to_json_mode,
|
|
)
|
|
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
|
handle_messages_with_content_list_to_str_conversion,
|
|
strip_name_from_messages,
|
|
)
|
|
from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator
|
|
from litellm.types.llms.anthropic import AllAnthropicToolsValues
|
|
from litellm.types.llms.databricks import (
|
|
AllDatabricksContentValues,
|
|
DatabricksChoice,
|
|
DatabricksFunction,
|
|
DatabricksResponse,
|
|
DatabricksTool,
|
|
)
|
|
from litellm.types.llms.openai import (
|
|
AllMessageValues,
|
|
ChatCompletionRedactedThinkingBlock,
|
|
ChatCompletionThinkingBlock,
|
|
ChatCompletionToolChoiceFunctionParam,
|
|
ChatCompletionToolChoiceObjectParam,
|
|
)
|
|
from litellm.types.utils import (
|
|
ChatCompletionMessageToolCall,
|
|
Choices,
|
|
Message,
|
|
ModelResponse,
|
|
ModelResponseStream,
|
|
ProviderField,
|
|
Usage,
|
|
)
|
|
|
|
from ...anthropic.chat.transformation import AnthropicConfig
|
|
from ...openai_like.chat.transformation import OpenAILikeChatConfig
|
|
from ..common_utils import DatabricksBase, DatabricksException
|
|
|
|
if TYPE_CHECKING:
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
|
|
|
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
|
else:
|
|
LiteLLMLoggingObj = Any
|
|
|
|
|
|
class DatabricksConfig(DatabricksBase, OpenAILikeChatConfig, AnthropicConfig):
|
|
"""
|
|
Reference: https://docs.databricks.com/en/machine-learning/foundation-models/api-reference.html#chat-request
|
|
"""
|
|
|
|
max_tokens: Optional[int] = None
|
|
temperature: Optional[int] = None
|
|
top_p: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
stop: Optional[Union[List[str], str]] = None
|
|
n: Optional[int] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_tokens: Optional[int] = None,
|
|
temperature: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
top_k: Optional[int] = None,
|
|
stop: Optional[Union[List[str], str]] = None,
|
|
n: Optional[int] = None,
|
|
) -> None:
|
|
locals_ = locals().copy()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return super().get_config()
|
|
|
|
def get_required_params(self) -> List[ProviderField]:
|
|
"""For a given provider, return it's required fields with a description"""
|
|
return [
|
|
ProviderField(
|
|
field_name="api_key",
|
|
field_type="string",
|
|
field_description="Your Databricks API Key.",
|
|
field_value="dapi...",
|
|
),
|
|
ProviderField(
|
|
field_name="api_base",
|
|
field_type="string",
|
|
field_description="Your Databricks API Base.",
|
|
field_value="https://adb-..",
|
|
),
|
|
]
|
|
|
|
def validate_environment(
|
|
self,
|
|
headers: dict,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
api_key: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
) -> dict:
|
|
api_base, headers = self.databricks_validate_environment(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
endpoint_type="chat_completions",
|
|
custom_endpoint=False,
|
|
headers=headers,
|
|
)
|
|
# Ensure Content-Type header is set
|
|
headers["Content-Type"] = "application/json"
|
|
return headers
|
|
|
|
def get_complete_url(
|
|
self,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
model: str,
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
stream: Optional[bool] = None,
|
|
) -> str:
|
|
api_base = self._get_api_base(api_base)
|
|
complete_url = f"{api_base}/chat/completions"
|
|
return complete_url
|
|
|
|
def get_supported_openai_params(self, model: Optional[str] = None) -> list:
|
|
return [
|
|
"stream",
|
|
"stop",
|
|
"temperature",
|
|
"top_p",
|
|
"max_tokens",
|
|
"max_completion_tokens",
|
|
"n",
|
|
"response_format",
|
|
"tools",
|
|
"tool_choice",
|
|
"reasoning_effort",
|
|
"thinking",
|
|
]
|
|
|
|
def convert_anthropic_tool_to_databricks_tool(
|
|
self, tool: Optional[AllAnthropicToolsValues]
|
|
) -> Optional[DatabricksTool]:
|
|
if tool is None:
|
|
return None
|
|
|
|
return DatabricksTool(
|
|
type="function",
|
|
function=DatabricksFunction(
|
|
name=tool["name"],
|
|
parameters=cast(dict, tool.get("input_schema") or {}),
|
|
),
|
|
)
|
|
|
|
def _map_openai_to_dbrx_tool(self, model: str, tools: List) -> List[DatabricksTool]:
|
|
# if not claude, send as is
|
|
if "claude" not in model:
|
|
return tools
|
|
|
|
# if claude, convert to anthropic tool and then to databricks tool
|
|
anthropic_tools = self._map_tools(tools=tools)
|
|
databricks_tools = [
|
|
cast(DatabricksTool, self.convert_anthropic_tool_to_databricks_tool(tool))
|
|
for tool in anthropic_tools
|
|
]
|
|
return databricks_tools
|
|
|
|
def map_response_format_to_databricks_tool(
|
|
self,
|
|
model: str,
|
|
value: Optional[dict],
|
|
optional_params: dict,
|
|
is_thinking_enabled: bool,
|
|
) -> Optional[DatabricksTool]:
|
|
if value is None:
|
|
return None
|
|
|
|
tool = self.map_response_format_to_anthropic_tool(
|
|
value, optional_params, is_thinking_enabled
|
|
)
|
|
|
|
databricks_tool = self.convert_anthropic_tool_to_databricks_tool(tool)
|
|
return databricks_tool
|
|
|
|
def map_openai_params(
|
|
self,
|
|
non_default_params: dict,
|
|
optional_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
replace_max_completion_tokens_with_max_tokens: bool = True,
|
|
) -> dict:
|
|
is_thinking_enabled = self.is_thinking_enabled(non_default_params)
|
|
mapped_params = super().map_openai_params(
|
|
non_default_params, optional_params, model, drop_params
|
|
)
|
|
if "tools" in mapped_params:
|
|
mapped_params["tools"] = self._map_openai_to_dbrx_tool(
|
|
model=model, tools=mapped_params["tools"]
|
|
)
|
|
if (
|
|
"max_completion_tokens" in non_default_params
|
|
and replace_max_completion_tokens_with_max_tokens
|
|
):
|
|
mapped_params["max_tokens"] = non_default_params[
|
|
"max_completion_tokens"
|
|
] # most openai-compatible providers support 'max_tokens' not 'max_completion_tokens'
|
|
mapped_params.pop("max_completion_tokens", None)
|
|
|
|
if "response_format" in non_default_params and "claude" in model:
|
|
_tool = self.map_response_format_to_databricks_tool(
|
|
model,
|
|
non_default_params["response_format"],
|
|
mapped_params,
|
|
is_thinking_enabled,
|
|
)
|
|
|
|
if _tool is not None:
|
|
self._add_tools_to_optional_params(
|
|
optional_params=optional_params, tools=[_tool]
|
|
)
|
|
optional_params["json_mode"] = True
|
|
if not is_thinking_enabled:
|
|
_tool_choice = ChatCompletionToolChoiceObjectParam(
|
|
type="function",
|
|
function=ChatCompletionToolChoiceFunctionParam(
|
|
name=RESPONSE_FORMAT_TOOL_NAME
|
|
),
|
|
)
|
|
optional_params["tool_choice"] = _tool_choice
|
|
optional_params.pop(
|
|
"response_format", None
|
|
) # unsupported for claude models - if json_schema -> convert to tool call
|
|
|
|
if "reasoning_effort" in non_default_params and "claude" in model:
|
|
optional_params["thinking"] = AnthropicConfig._map_reasoning_effort(
|
|
non_default_params.get("reasoning_effort")
|
|
)
|
|
optional_params.pop("reasoning_effort", None)
|
|
## handle thinking tokens
|
|
self.update_optional_params_with_thinking_tokens(
|
|
non_default_params=non_default_params, optional_params=mapped_params
|
|
)
|
|
|
|
return mapped_params
|
|
|
|
def _should_fake_stream(self, optional_params: dict) -> bool:
|
|
"""
|
|
Databricks doesn't support 'response_format' while streaming
|
|
"""
|
|
if optional_params.get("response_format") is not None:
|
|
return True
|
|
|
|
return False
|
|
|
|
def _transform_messages(
|
|
self, messages: List[AllMessageValues], model: str
|
|
) -> List[AllMessageValues]:
|
|
"""
|
|
Databricks does not support:
|
|
- content in list format.
|
|
- 'name' in user message.
|
|
"""
|
|
new_messages = []
|
|
for idx, message in enumerate(messages):
|
|
if isinstance(message, BaseModel):
|
|
_message = message.model_dump(exclude_none=True)
|
|
else:
|
|
_message = message
|
|
new_messages.append(_message)
|
|
new_messages = handle_messages_with_content_list_to_str_conversion(new_messages)
|
|
new_messages = strip_name_from_messages(new_messages)
|
|
return super()._transform_messages(messages=new_messages, model=model)
|
|
|
|
@staticmethod
|
|
def extract_content_str(
|
|
content: Optional[AllDatabricksContentValues],
|
|
) -> Optional[str]:
|
|
if content is None:
|
|
return None
|
|
if isinstance(content, str):
|
|
return content
|
|
elif isinstance(content, list):
|
|
content_str = ""
|
|
for item in content:
|
|
if item["type"] == "text":
|
|
content_str += item["text"]
|
|
return content_str
|
|
else:
|
|
raise Exception(f"Unsupported content type: {type(content)}")
|
|
|
|
@staticmethod
|
|
def extract_reasoning_content(
|
|
content: Optional[AllDatabricksContentValues],
|
|
) -> Tuple[
|
|
Optional[str],
|
|
Optional[
|
|
List[
|
|
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
|
]
|
|
],
|
|
]:
|
|
"""
|
|
Extract and return the reasoning content and thinking blocks
|
|
"""
|
|
if content is None:
|
|
return None, None
|
|
thinking_blocks: Optional[
|
|
List[
|
|
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
|
|
]
|
|
] = None
|
|
reasoning_content: Optional[str] = None
|
|
if isinstance(content, list):
|
|
for item in content:
|
|
if item["type"] == "reasoning":
|
|
for sum in item["summary"]:
|
|
if reasoning_content is None:
|
|
reasoning_content = ""
|
|
reasoning_content += sum["text"]
|
|
thinking_block = ChatCompletionThinkingBlock(
|
|
type="thinking",
|
|
thinking=sum["text"],
|
|
signature=sum["signature"],
|
|
)
|
|
if thinking_blocks is None:
|
|
thinking_blocks = []
|
|
thinking_blocks.append(thinking_block)
|
|
return reasoning_content, thinking_blocks
|
|
|
|
def _transform_choices(
|
|
self, choices: List[DatabricksChoice], json_mode: Optional[bool] = None
|
|
) -> List[Choices]:
|
|
transformed_choices = []
|
|
|
|
for choice in choices:
|
|
## HANDLE JSON MODE - anthropic returns single function call]
|
|
tool_calls = choice["message"].get("tool_calls", None)
|
|
if tool_calls is not None:
|
|
_openai_tool_calls = []
|
|
for _tc in tool_calls:
|
|
_openai_tc = ChatCompletionMessageToolCall(**_tc) # type: ignore
|
|
_openai_tool_calls.append(_openai_tc)
|
|
fixed_tool_calls = _handle_invalid_parallel_tool_calls(
|
|
_openai_tool_calls
|
|
)
|
|
|
|
if fixed_tool_calls is not None:
|
|
tool_calls = fixed_tool_calls
|
|
|
|
translated_message: Optional[Message] = None
|
|
finish_reason: Optional[str] = None
|
|
if tool_calls and _should_convert_tool_call_to_json_mode(
|
|
tool_calls=tool_calls,
|
|
convert_tool_call_to_json_mode=json_mode,
|
|
):
|
|
# to support response_format on claude models
|
|
json_mode_content_str: Optional[str] = (
|
|
str(tool_calls[0]["function"].get("arguments", "")) or None
|
|
)
|
|
if json_mode_content_str is not None:
|
|
translated_message = Message(content=json_mode_content_str)
|
|
finish_reason = "stop"
|
|
|
|
if translated_message is None:
|
|
## get the content str
|
|
content_str = DatabricksConfig.extract_content_str(
|
|
choice["message"]["content"]
|
|
)
|
|
|
|
## get the reasoning content
|
|
(
|
|
reasoning_content,
|
|
thinking_blocks,
|
|
) = DatabricksConfig.extract_reasoning_content(
|
|
choice["message"].get("content")
|
|
)
|
|
|
|
translated_message = Message(
|
|
role="assistant",
|
|
content=content_str,
|
|
reasoning_content=reasoning_content,
|
|
thinking_blocks=thinking_blocks,
|
|
tool_calls=choice["message"].get("tool_calls"),
|
|
)
|
|
|
|
if finish_reason is None:
|
|
finish_reason = choice["finish_reason"]
|
|
|
|
translated_choice = Choices(
|
|
finish_reason=finish_reason,
|
|
index=choice["index"],
|
|
message=translated_message,
|
|
logprobs=None,
|
|
enhancements=None,
|
|
)
|
|
|
|
transformed_choices.append(translated_choice)
|
|
|
|
return transformed_choices
|
|
|
|
def transform_response(
|
|
self,
|
|
model: str,
|
|
raw_response: httpx.Response,
|
|
model_response: ModelResponse,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
request_data: dict,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
encoding: Any,
|
|
api_key: Optional[str] = None,
|
|
json_mode: Optional[bool] = None,
|
|
) -> ModelResponse:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
original_response=raw_response.text,
|
|
additional_args={"complete_input_dict": request_data},
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = DatabricksResponse(**raw_response.json()) # type: ignore
|
|
except Exception as e:
|
|
response_headers = getattr(raw_response, "headers", None)
|
|
raise DatabricksException(
|
|
message="Unable to get json response - {}, Original Response: {}".format(
|
|
str(e), raw_response.text
|
|
),
|
|
status_code=raw_response.status_code,
|
|
headers=response_headers,
|
|
)
|
|
|
|
model_response.model = completion_response["model"]
|
|
model_response.id = completion_response["id"]
|
|
model_response.created = completion_response["created"]
|
|
setattr(model_response, "usage", Usage(**completion_response["usage"]))
|
|
|
|
model_response.choices = self._transform_choices( # type: ignore
|
|
choices=completion_response["choices"],
|
|
json_mode=json_mode,
|
|
)
|
|
|
|
return model_response
|
|
|
|
def get_model_response_iterator(
|
|
self,
|
|
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
|
sync_stream: bool,
|
|
json_mode: Optional[bool] = False,
|
|
):
|
|
return DatabricksChatResponseIterator(
|
|
streaming_response=streaming_response,
|
|
sync_stream=sync_stream,
|
|
json_mode=json_mode,
|
|
)
|
|
|
|
|
|
class DatabricksChatResponseIterator(BaseModelResponseIterator):
|
|
def __init__(
|
|
self,
|
|
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
|
sync_stream: bool,
|
|
json_mode: Optional[bool] = False,
|
|
):
|
|
super().__init__(streaming_response, sync_stream)
|
|
|
|
self.json_mode = json_mode
|
|
self._last_function_name = None # Track the last seen function name
|
|
|
|
def chunk_parser(self, chunk: dict) -> ModelResponseStream:
|
|
try:
|
|
translated_choices = []
|
|
for choice in chunk["choices"]:
|
|
tool_calls = choice["delta"].get("tool_calls")
|
|
if tool_calls and self.json_mode:
|
|
# 1. Check if the function name is set and == RESPONSE_FORMAT_TOOL_NAME
|
|
# 2. If no function name, just args -> check last function name (saved via state variable)
|
|
# 3. Convert args to json
|
|
# 4. Convert json to message
|
|
# 5. Set content to message.content
|
|
# 6. Set tool_calls to None
|
|
from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
|
|
from litellm.llms.base_llm.base_utils import (
|
|
_convert_tool_response_to_message,
|
|
)
|
|
|
|
# Check if this chunk has a function name
|
|
function_name = tool_calls[0].get("function", {}).get("name")
|
|
if function_name is not None:
|
|
self._last_function_name = function_name
|
|
|
|
# If we have a saved function name that matches RESPONSE_FORMAT_TOOL_NAME
|
|
# or this chunk has the matching function name
|
|
if (
|
|
self._last_function_name == RESPONSE_FORMAT_TOOL_NAME
|
|
or function_name == RESPONSE_FORMAT_TOOL_NAME
|
|
):
|
|
# Convert tool calls to message format
|
|
message = _convert_tool_response_to_message(tool_calls)
|
|
if message is not None:
|
|
if message.content == "{}": # empty json
|
|
message.content = ""
|
|
choice["delta"]["content"] = message.content
|
|
choice["delta"]["tool_calls"] = None
|
|
elif tool_calls:
|
|
for _tc in tool_calls:
|
|
if _tc.get("function", {}).get("arguments") == "{}":
|
|
_tc["function"]["arguments"] = "" # avoid invalid json
|
|
# extract the content str
|
|
content_str = DatabricksConfig.extract_content_str(
|
|
choice["delta"].get("content")
|
|
)
|
|
|
|
# extract the reasoning content
|
|
(
|
|
reasoning_content,
|
|
thinking_blocks,
|
|
) = DatabricksConfig.extract_reasoning_content(
|
|
choice["delta"]["content"]
|
|
)
|
|
|
|
choice["delta"]["content"] = content_str
|
|
choice["delta"]["reasoning_content"] = reasoning_content
|
|
choice["delta"]["thinking_blocks"] = thinking_blocks
|
|
translated_choices.append(choice)
|
|
return ModelResponseStream(
|
|
id=chunk["id"],
|
|
object="chat.completion.chunk",
|
|
created=chunk["created"],
|
|
model=chunk["model"],
|
|
choices=translated_choices,
|
|
)
|
|
except KeyError as e:
|
|
raise DatabricksException(
|
|
message=f"KeyError: {e}, Got unexpected response from Databricks: {chunk}",
|
|
status_code=400,
|
|
)
|
|
except Exception as e:
|
|
raise e
|