mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* feat(main.py): initial commit for `/image/variations` endpoint support * refactor(base_llm/): introduce new base llm base config for image variation endpoints * refactor(openai/image_variations/transformation.py): implement openai image variation transformation handler * fix: test * feat(openai/): working openai `/image/variation` endpoint calls via sdk * feat(topaz/): topaz sync image variation call support Addresses https://github.com/BerriAI/litellm/issues/7593 ' * fix(topaz/transformation.py): fix linting errors * fix(openai/image_variations/handler.py): fix passing json data * fix(main.py): image_variation/ support async image variation route - `aimage_variation` * fix(test_get_model_info.py): fix test * fix: cleanup unused imports * feat(openai/): add async `/image/variations` endpoint support * feat(topaz/): support async `/image/variations` calls * fix: test * fix(utils.py): fix get_model_info_helper for no model info w/ provider config handles situation where model info is not known but provider config exists * test(test_router_fallbacks.py): mark flaky test * fix: fix unused imports * test: bump otel load test perf threshold - accounts for current load tests hitting same server
244 lines
8.4 KiB
Python
244 lines
8.4 KiB
Python
"""
|
|
OpenAI Image Variations Handler
|
|
"""
|
|
|
|
from typing import Callable, Optional
|
|
|
|
import httpx
|
|
from openai import AsyncOpenAI, OpenAI
|
|
|
|
import litellm
|
|
from litellm.types.utils import FileTypes, ImageResponse, LlmProviders
|
|
from litellm.utils import ProviderConfigManager
|
|
|
|
from ...base_llm.image_variations.transformation import BaseImageVariationConfig
|
|
from ...custom_httpx.llm_http_handler import LiteLLMLoggingObj
|
|
from ..common_utils import OpenAIError
|
|
|
|
|
|
class OpenAIImageVariationsHandler:
|
|
def get_sync_client(
|
|
self,
|
|
client: Optional[OpenAI],
|
|
init_client_params: dict,
|
|
):
|
|
if client is None:
|
|
openai_client = OpenAI(
|
|
**init_client_params,
|
|
)
|
|
else:
|
|
openai_client = client
|
|
return openai_client
|
|
|
|
def get_async_client(
|
|
self, client: Optional[AsyncOpenAI], init_client_params: dict
|
|
) -> AsyncOpenAI:
|
|
if client is None:
|
|
openai_client = AsyncOpenAI(
|
|
**init_client_params,
|
|
)
|
|
else:
|
|
openai_client = client
|
|
return openai_client
|
|
|
|
async def async_image_variations(
|
|
self,
|
|
api_key: str,
|
|
api_base: str,
|
|
organization: Optional[str],
|
|
client: Optional[AsyncOpenAI],
|
|
data: dict,
|
|
headers: dict,
|
|
model: Optional[str],
|
|
timeout: float,
|
|
max_retries: int,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
model_response: ImageResponse,
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
image: FileTypes,
|
|
provider_config: BaseImageVariationConfig,
|
|
) -> ImageResponse:
|
|
try:
|
|
init_client_params = {
|
|
"api_key": api_key,
|
|
"base_url": api_base,
|
|
"http_client": litellm.client_session,
|
|
"timeout": timeout,
|
|
"max_retries": max_retries, # type: ignore
|
|
"organization": organization,
|
|
}
|
|
|
|
client = self.get_async_client(
|
|
client=client, init_client_params=init_client_params
|
|
)
|
|
|
|
raw_response = await client.images.with_raw_response.create_variation(**data) # type: ignore
|
|
response = raw_response.parse()
|
|
response_json = response.model_dump()
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
api_key=api_key,
|
|
original_response=response_json,
|
|
additional_args={
|
|
"headers": headers,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
return provider_config.transform_response_image_variation(
|
|
model=model,
|
|
model_response=ImageResponse(**response_json),
|
|
raw_response=httpx.Response(
|
|
status_code=200,
|
|
request=httpx.Request(
|
|
method="GET", url="https://litellm.ai"
|
|
), # mock request object
|
|
),
|
|
logging_obj=logging_obj,
|
|
request_data=data,
|
|
image=image,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
encoding=None,
|
|
api_key=api_key,
|
|
)
|
|
except Exception as e:
|
|
status_code = getattr(e, "status_code", 500)
|
|
error_headers = getattr(e, "headers", None)
|
|
error_text = getattr(e, "text", str(e))
|
|
error_response = getattr(e, "response", None)
|
|
if error_headers is None and error_response:
|
|
error_headers = getattr(error_response, "headers", None)
|
|
raise OpenAIError(
|
|
status_code=status_code, message=error_text, headers=error_headers
|
|
)
|
|
|
|
def image_variations(
|
|
self,
|
|
model_response: ImageResponse,
|
|
api_key: str,
|
|
api_base: str,
|
|
model: Optional[str],
|
|
image: FileTypes,
|
|
timeout: float,
|
|
custom_llm_provider: str,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
print_verbose: Optional[Callable] = None,
|
|
logger_fn=None,
|
|
client=None,
|
|
organization: Optional[str] = None,
|
|
headers: Optional[dict] = None,
|
|
) -> ImageResponse:
|
|
try:
|
|
provider_config = ProviderConfigManager.get_provider_image_variation_config(
|
|
model=model or "", # openai defaults to dall-e-2
|
|
provider=LlmProviders.OPENAI,
|
|
)
|
|
|
|
if provider_config is None:
|
|
raise ValueError(
|
|
f"image variation provider not found: {custom_llm_provider}."
|
|
)
|
|
|
|
max_retries = optional_params.pop("max_retries", 2)
|
|
|
|
data = provider_config.transform_request_image_variation(
|
|
model=model,
|
|
image=image,
|
|
optional_params=optional_params,
|
|
headers=headers or {},
|
|
)
|
|
json_data = data.get("data")
|
|
if not json_data:
|
|
raise ValueError(
|
|
f"data field is required, for openai image variations. Got={data}"
|
|
)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input="",
|
|
api_key=api_key,
|
|
additional_args={
|
|
"headers": headers,
|
|
"api_base": api_base,
|
|
"complete_input_dict": data,
|
|
},
|
|
)
|
|
if litellm_params.get("async_call", False):
|
|
return self.async_image_variations(
|
|
api_base=api_base,
|
|
data=json_data,
|
|
headers=headers or {},
|
|
model_response=model_response,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
model=model,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=organization,
|
|
client=client,
|
|
provider_config=provider_config,
|
|
image=image,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
) # type: ignore
|
|
|
|
init_client_params = {
|
|
"api_key": api_key,
|
|
"base_url": api_base,
|
|
"http_client": litellm.client_session,
|
|
"timeout": timeout,
|
|
"max_retries": max_retries, # type: ignore
|
|
"organization": organization,
|
|
}
|
|
|
|
client = self.get_sync_client(
|
|
client=client, init_client_params=init_client_params
|
|
)
|
|
|
|
raw_response = client.images.with_raw_response.create_variation(**json_data) # type: ignore
|
|
response = raw_response.parse()
|
|
response_json = response.model_dump()
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
api_key=api_key,
|
|
original_response=response_json,
|
|
additional_args={
|
|
"headers": headers,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
return provider_config.transform_response_image_variation(
|
|
model=model,
|
|
model_response=ImageResponse(**response_json),
|
|
raw_response=httpx.Response(
|
|
status_code=200,
|
|
request=httpx.Request(
|
|
method="GET", url="https://litellm.ai"
|
|
), # mock request object
|
|
),
|
|
logging_obj=logging_obj,
|
|
request_data=json_data,
|
|
image=image,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
encoding=None,
|
|
api_key=api_key,
|
|
)
|
|
except Exception as e:
|
|
status_code = getattr(e, "status_code", 500)
|
|
error_headers = getattr(e, "headers", None)
|
|
error_text = getattr(e, "text", str(e))
|
|
error_response = getattr(e, "response", None)
|
|
if error_headers is None and error_response:
|
|
error_headers = getattr(error_response, "headers", None)
|
|
raise OpenAIError(
|
|
status_code=status_code, message=error_text, headers=error_headers
|
|
)
|