mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* feat(langfuse.py): log the used prompt when prompt management used * test: fix test * docs(self_serve.md): add doc on restricting personal key creation on ui * feat(s3.py): support s3 logging with team alias prefixes (if available) New preview feature * fix(main.py): remove old if block - simplify to just await if coroutine returned fixes lm_studio async embedding error * fix(langfuse.py): handle get prompt check
153 lines
4.8 KiB
Python
153 lines
4.8 KiB
Python
# What is this?
|
|
## Handler file for OpenAI-like endpoints.
|
|
## Allows jina ai embedding calls - which don't allow 'encoding_format' in payload.
|
|
|
|
import json
|
|
from typing import Optional
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.types.utils import EmbeddingResponse
|
|
|
|
from ..common_utils import OpenAILikeBase, OpenAILikeError
|
|
|
|
|
|
class OpenAILikeEmbeddingHandler(OpenAILikeBase):
|
|
def __init__(self, **kwargs):
|
|
pass
|
|
|
|
async def aembedding(
|
|
self,
|
|
input: list,
|
|
data: dict,
|
|
model_response: EmbeddingResponse,
|
|
timeout: float,
|
|
api_key: str,
|
|
api_base: str,
|
|
logging_obj,
|
|
headers: dict,
|
|
client=None,
|
|
) -> EmbeddingResponse:
|
|
response = None
|
|
try:
|
|
if client is None or not isinstance(client, AsyncHTTPHandler):
|
|
async_client = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.OPENAI,
|
|
params={"timeout": timeout},
|
|
)
|
|
else:
|
|
async_client = client
|
|
try:
|
|
response = await async_client.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
) # type: ignore
|
|
|
|
response.raise_for_status()
|
|
|
|
response_json = response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise OpenAILikeError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text if e.response else str(e),
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise OpenAILikeError(
|
|
status_code=408, message="Timeout error occurred."
|
|
)
|
|
except Exception as e:
|
|
raise OpenAILikeError(status_code=500, message=str(e))
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response_json,
|
|
)
|
|
return EmbeddingResponse(**response_json)
|
|
except Exception as e:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
original_response=str(e),
|
|
)
|
|
raise e
|
|
|
|
def embedding(
|
|
self,
|
|
model: str,
|
|
input: list,
|
|
timeout: float,
|
|
logging_obj,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
optional_params: dict,
|
|
model_response: Optional[EmbeddingResponse] = None,
|
|
client=None,
|
|
aembedding=None,
|
|
custom_endpoint: Optional[bool] = None,
|
|
headers: Optional[dict] = None,
|
|
) -> EmbeddingResponse:
|
|
api_base, headers = self._validate_environment(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
endpoint_type="embeddings",
|
|
headers=headers,
|
|
custom_endpoint=custom_endpoint,
|
|
)
|
|
model = model
|
|
data = {"model": model, "input": input, **optional_params}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data, "api_base": api_base},
|
|
)
|
|
|
|
if aembedding is True:
|
|
return self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, headers=headers) # type: ignore
|
|
if client is None or isinstance(client, AsyncHTTPHandler):
|
|
self.client = HTTPHandler(timeout=timeout) # type: ignore
|
|
else:
|
|
self.client = client
|
|
|
|
## EMBEDDING CALL
|
|
try:
|
|
response = self.client.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
) # type: ignore
|
|
|
|
response.raise_for_status() # type: ignore
|
|
|
|
response_json = response.json() # type: ignore
|
|
except httpx.HTTPStatusError as e:
|
|
raise OpenAILikeError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text,
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise OpenAILikeError(status_code=408, message="Timeout error occurred.")
|
|
except Exception as e:
|
|
raise OpenAILikeError(status_code=500, message=str(e))
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response_json,
|
|
)
|
|
|
|
return litellm.EmbeddingResponse(**response_json)
|