mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* test: add initial e2e test * fix(vertex_ai/files): initial commit adding sync file create support * refactor: initial commit of vertex ai non-jsonl files reaching gcp endpoint * fix(vertex_ai/files/transformation.py): initial working commit of non-jsonl file call reaching backend endpoint * fix(vertex_ai/files/transformation.py): working e2e non-jsonl file upload * test: working e2e jsonl call * test: unit testing for jsonl file creation * fix(vertex_ai/transformation.py): reset file pointer after read allow multiple reads on same file object * fix: fix linting errors * fix: fix ruff linting errors * fix: fix import * fix: fix linting error * fix: fix linting error * fix(vertex_ai/files/transformation.py): fix linting error * test: update test * test: update tests * fix: fix linting errors * fix: fix test * fix: fix linting error
275 lines
10 KiB
Python
275 lines
10 KiB
Python
"""
|
|
Translate from OpenAI's `/v1/chat/completions` to Sagemaker's `/invoke`
|
|
|
|
In the Huggingface TGI format.
|
|
"""
|
|
|
|
import json
|
|
import time
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
|
|
|
from httpx._models import Headers, Response
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.asyncify import asyncify
|
|
from litellm.litellm_core_utils.prompt_templates.factory import (
|
|
custom_prompt,
|
|
prompt_factory,
|
|
)
|
|
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
|
from litellm.types.llms.openai import AllMessageValues
|
|
from litellm.types.utils import ModelResponse, Usage
|
|
from litellm.utils import token_counter
|
|
|
|
from ..common_utils import SagemakerError
|
|
|
|
if TYPE_CHECKING:
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
|
|
|
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
|
else:
|
|
LiteLLMLoggingObj = Any
|
|
|
|
|
|
class SagemakerConfig(BaseConfig):
|
|
"""
|
|
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
|
|
"""
|
|
|
|
max_new_tokens: Optional[int] = None
|
|
top_p: Optional[float] = None
|
|
temperature: Optional[float] = None
|
|
return_full_text: Optional[bool] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_new_tokens: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
temperature: Optional[float] = None,
|
|
return_full_text: Optional[bool] = None,
|
|
) -> None:
|
|
locals_ = locals().copy()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return super().get_config()
|
|
|
|
def get_error_class(
|
|
self, error_message: str, status_code: int, headers: Union[dict, Headers]
|
|
) -> BaseLLMException:
|
|
return SagemakerError(
|
|
message=error_message, status_code=status_code, headers=headers
|
|
)
|
|
|
|
def get_supported_openai_params(self, model: str) -> List:
|
|
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
|
|
|
|
def map_openai_params(
|
|
self,
|
|
non_default_params: dict,
|
|
optional_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
) -> dict:
|
|
for param, value in non_default_params.items():
|
|
if param == "temperature":
|
|
if value == 0.0 or value == 0:
|
|
# hugging face exception raised when temp==0
|
|
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
|
|
if not non_default_params.get(
|
|
"aws_sagemaker_allow_zero_temp", False
|
|
):
|
|
value = 0.01
|
|
|
|
optional_params["temperature"] = value
|
|
if param == "top_p":
|
|
optional_params["top_p"] = value
|
|
if param == "n":
|
|
optional_params["best_of"] = value
|
|
optional_params[
|
|
"do_sample"
|
|
] = True # Need to sample if you want best of for hf inference endpoints
|
|
if param == "stream":
|
|
optional_params["stream"] = value
|
|
if param == "stop":
|
|
optional_params["stop"] = value
|
|
if param == "max_tokens":
|
|
# HF TGI raises the following exception when max_new_tokens==0
|
|
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
|
|
if value == 0:
|
|
value = 1
|
|
optional_params["max_new_tokens"] = value
|
|
non_default_params.pop("aws_sagemaker_allow_zero_temp", None)
|
|
return optional_params
|
|
|
|
def _transform_prompt(
|
|
self,
|
|
model: str,
|
|
messages: List,
|
|
custom_prompt_dict: dict,
|
|
hf_model_name: Optional[str],
|
|
) -> str:
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", None),
|
|
initial_prompt_value=model_prompt_details.get(
|
|
"initial_prompt_value", ""
|
|
),
|
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
|
messages=messages,
|
|
)
|
|
elif hf_model_name in custom_prompt_dict:
|
|
# check if the base huggingface model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[hf_model_name]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", None),
|
|
initial_prompt_value=model_prompt_details.get(
|
|
"initial_prompt_value", ""
|
|
),
|
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
|
messages=messages,
|
|
)
|
|
else:
|
|
if hf_model_name is None:
|
|
if "llama-2" in model.lower(): # llama-2 model
|
|
if "chat" in model.lower(): # apply llama2 chat template
|
|
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
|
|
else: # apply regular llama2 template
|
|
hf_model_name = "meta-llama/Llama-2-7b"
|
|
hf_model_name = (
|
|
hf_model_name or model
|
|
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
|
|
prompt: str = prompt_factory(model=hf_model_name, messages=messages) # type: ignore
|
|
|
|
return prompt
|
|
|
|
def transform_request(
|
|
self,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
headers: dict,
|
|
) -> dict:
|
|
inference_params = optional_params.copy()
|
|
stream = inference_params.pop("stream", False)
|
|
data: Dict = {"parameters": inference_params}
|
|
if stream is True:
|
|
data["stream"] = True
|
|
|
|
custom_prompt_dict = (
|
|
litellm_params.get("custom_prompt_dict", None) or litellm.custom_prompt_dict
|
|
)
|
|
|
|
hf_model_name = litellm_params.get("hf_model_name", None)
|
|
|
|
prompt = self._transform_prompt(
|
|
model=model,
|
|
messages=messages,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
hf_model_name=hf_model_name,
|
|
)
|
|
data["inputs"] = prompt
|
|
|
|
return data
|
|
|
|
async def async_transform_request(
|
|
self,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
headers: dict,
|
|
) -> dict:
|
|
return await asyncify(self.transform_request)(
|
|
model, messages, optional_params, litellm_params, headers
|
|
)
|
|
|
|
def transform_response(
|
|
self,
|
|
model: str,
|
|
raw_response: Response,
|
|
model_response: ModelResponse,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
request_data: dict,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
encoding: str,
|
|
api_key: Optional[str] = None,
|
|
json_mode: Optional[bool] = None,
|
|
) -> ModelResponse:
|
|
completion_response = raw_response.json()
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=completion_response,
|
|
additional_args={"complete_input_dict": request_data},
|
|
)
|
|
|
|
prompt = request_data["inputs"]
|
|
|
|
## RESPONSE OBJECT
|
|
try:
|
|
if isinstance(completion_response, list):
|
|
completion_response_choices = completion_response[0]
|
|
else:
|
|
completion_response_choices = completion_response
|
|
completion_output = ""
|
|
if "generation" in completion_response_choices:
|
|
completion_output += completion_response_choices["generation"]
|
|
elif "generated_text" in completion_response_choices:
|
|
completion_output += completion_response_choices["generated_text"]
|
|
|
|
# check if the prompt template is part of output, if so - filter it out
|
|
if completion_output.startswith(prompt) and "<s>" in prompt:
|
|
completion_output = completion_output.replace(prompt, "", 1)
|
|
|
|
model_response.choices[0].message.content = completion_output # type: ignore
|
|
except Exception:
|
|
raise SagemakerError(
|
|
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
|
|
status_code=500,
|
|
)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = token_counter(
|
|
text=prompt, count_response_tokens=True
|
|
) # doesn't apply any default token count from openai's chat template
|
|
completion_tokens = token_counter(
|
|
text=model_response["choices"][0]["message"].get("content", ""),
|
|
count_response_tokens=True,
|
|
)
|
|
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
return model_response
|
|
|
|
def validate_environment(
|
|
self,
|
|
headers: Optional[dict],
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
api_key: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
) -> dict:
|
|
headers = {"Content-Type": "application/json"}
|
|
|
|
if headers is not None:
|
|
headers = {"Content-Type": "application/json", **headers}
|
|
|
|
return headers
|