litellm-mirror/tests/local_testing/test_whisper.py
Krish Dholakia c0845fec1f
Add OpenAI gpt-4o-transcribe support (#9517)
* refactor: introduce new transformation config for gpt-4o-transcribe models

* refactor: expose new transformation configs for audio transcription

* ci: fix config yml

* feat(openai/transcriptions): support provider config transformation on openai audio transcriptions

allows gpt-4o and whisper audio transformation to work as expected

* refactor: migrate fireworks ai + deepgram to new transform request pattern

* feat(openai/): working support for gpt-4o-audio-transcribe

* build(model_prices_and_context_window.json): add gpt-4o-transcribe to model cost map

* build(model_prices_and_context_window.json): specify what endpoints are supported for `/audio/transcriptions`

* fix(get_supported_openai_params.py): fix return

* refactor(deepgram/): migrate unit test to deepgram handler

* refactor: cleanup unused imports

* fix(get_supported_openai_params.py): fix linting error

* test: update test
2025-03-26 23:10:25 -07:00

166 lines
4.3 KiB
Python

# What is this?
## Tests `litellm.transcription` endpoint. Outside litellm module b/c of audio file used in testing (it's ~700kb).
import asyncio
import logging
import os
import sys
import time
import traceback
from typing import Optional
import aiohttp
import dotenv
import pytest
from dotenv import load_dotenv
from openai import AsyncOpenAI
import litellm
from litellm.integrations.custom_logger import CustomLogger
# Get the current directory of the file being run
pwd = os.path.dirname(os.path.realpath(__file__))
print(pwd)
file_path = os.path.join(pwd, "gettysburg.wav")
audio_file = open(file_path, "rb")
file2_path = os.path.join(pwd, "eagle.wav")
audio_file2 = open(file2_path, "rb")
load_dotenv()
sys.path.insert(
0, os.path.abspath("../")
) # Adds the parent directory to the system path
import litellm
from litellm import Router
@pytest.mark.parametrize(
"model, api_key, api_base",
[
("whisper-1", None, None),
# ("groq/whisper-large-v3", None, None),
(
"azure/azure-whisper",
os.getenv("AZURE_EUROPE_API_KEY"),
"https://my-endpoint-europe-berri-992.openai.azure.com/",
),
],
)
@pytest.mark.parametrize(
"response_format, timestamp_granularities",
[("json", None), ("vtt", None), ("verbose_json", ["word"])],
)
@pytest.mark.asyncio
@pytest.mark.flaky(retries=3, delay=1)
async def test_transcription(
model, api_key, api_base, response_format, timestamp_granularities
):
transcript = await litellm.atranscription(
model=model,
file=audio_file,
api_key=api_key,
api_base=api_base,
response_format=response_format,
drop_params=True,
)
print(f"transcript: {transcript.model_dump()}")
print(f"transcript hidden params: {transcript._hidden_params}")
assert transcript.text is not None
@pytest.mark.asyncio()
async def test_transcription_caching():
import litellm
from litellm.caching.caching import Cache
litellm.set_verbose = True
litellm.cache = Cache()
# make raw llm api call
response_1 = await litellm.atranscription(
model="whisper-1",
file=audio_file,
)
await asyncio.sleep(5)
# cache hit
response_2 = await litellm.atranscription(
model="whisper-1",
file=audio_file,
)
print("response_1", response_1)
print("response_2", response_2)
print("response2 hidden params", response_2._hidden_params)
assert response_2._hidden_params["cache_hit"] is True
# cache miss
response_3 = await litellm.atranscription(
model="whisper-1",
file=audio_file2,
)
print("response_3", response_3)
print("response3 hidden params", response_3._hidden_params)
assert response_3._hidden_params.get("cache_hit") is not True
assert response_3.text != response_2.text
litellm.cache = None
@pytest.mark.asyncio
async def test_whisper_log_pre_call():
from litellm.litellm_core_utils.litellm_logging import Logging
from datetime import datetime
from unittest.mock import patch, MagicMock
from litellm.integrations.custom_logger import CustomLogger
custom_logger = CustomLogger()
litellm.callbacks = [custom_logger]
with patch.object(custom_logger, "log_pre_api_call") as mock_log_pre_call:
await litellm.atranscription(
model="whisper-1",
file=audio_file,
)
mock_log_pre_call.assert_called_once()
@pytest.mark.asyncio
async def test_whisper_log_pre_call():
from litellm.litellm_core_utils.litellm_logging import Logging
from datetime import datetime
from unittest.mock import patch, MagicMock
from litellm.integrations.custom_logger import CustomLogger
custom_logger = CustomLogger()
litellm.callbacks = [custom_logger]
with patch.object(custom_logger, "log_pre_api_call") as mock_log_pre_call:
await litellm.atranscription(
model="whisper-1",
file=audio_file,
)
mock_log_pre_call.assert_called_once()
@pytest.mark.asyncio
async def test_gpt_4o_transcribe():
from litellm.litellm_core_utils.litellm_logging import Logging
from datetime import datetime
from unittest.mock import patch, MagicMock
await litellm.atranscription(
model="openai/gpt-4o-transcribe", file=audio_file, response_format="json"
)