mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
252 lines
9.2 KiB
Python
252 lines
9.2 KiB
Python
"""
|
|
Unified /v1/messages endpoint - (Anthropic Spec)
|
|
"""
|
|
|
|
import asyncio
|
|
import json
|
|
import time
|
|
import traceback
|
|
|
|
from fastapi import APIRouter, Depends, HTTPException, Request, Response, status
|
|
from fastapi.responses import StreamingResponse
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_proxy_logger
|
|
from litellm.proxy._types import *
|
|
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
|
|
from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
|
|
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body
|
|
from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request
|
|
from litellm.proxy.utils import ProxyLogging
|
|
|
|
router = APIRouter()
|
|
|
|
|
|
async def async_data_generator_anthropic(
|
|
response,
|
|
user_api_key_dict: UserAPIKeyAuth,
|
|
request_data: dict,
|
|
proxy_logging_obj: ProxyLogging,
|
|
):
|
|
verbose_proxy_logger.debug("inside generator")
|
|
try:
|
|
time.time()
|
|
async for chunk in response:
|
|
verbose_proxy_logger.debug(
|
|
"async_data_generator: received streaming chunk - {}".format(chunk)
|
|
)
|
|
### CALL HOOKS ### - modify outgoing data
|
|
chunk = await proxy_logging_obj.async_post_call_streaming_hook(
|
|
user_api_key_dict=user_api_key_dict, response=chunk
|
|
)
|
|
|
|
yield chunk
|
|
except Exception as e:
|
|
verbose_proxy_logger.exception(
|
|
"litellm.proxy.proxy_server.async_data_generator(): Exception occured - {}".format(
|
|
str(e)
|
|
)
|
|
)
|
|
await proxy_logging_obj.post_call_failure_hook(
|
|
user_api_key_dict=user_api_key_dict,
|
|
original_exception=e,
|
|
request_data=request_data,
|
|
)
|
|
verbose_proxy_logger.debug(
|
|
f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`"
|
|
)
|
|
|
|
if isinstance(e, HTTPException):
|
|
raise e
|
|
else:
|
|
error_traceback = traceback.format_exc()
|
|
error_msg = f"{str(e)}\n\n{error_traceback}"
|
|
|
|
proxy_exception = ProxyException(
|
|
message=getattr(e, "message", error_msg),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", 500),
|
|
)
|
|
error_returned = json.dumps({"error": proxy_exception.to_dict()})
|
|
yield f"data: {error_returned}\n\n"
|
|
|
|
|
|
@router.post(
|
|
"/v1/messages",
|
|
tags=["[beta] Anthropic `/v1/messages`"],
|
|
dependencies=[Depends(user_api_key_auth)],
|
|
include_in_schema=False,
|
|
)
|
|
async def anthropic_response( # noqa: PLR0915
|
|
fastapi_response: Response,
|
|
request: Request,
|
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
|
):
|
|
"""
|
|
Use `{PROXY_BASE_URL}/anthropic/v1/messages` instead - [Docs](https://docs.litellm.ai/docs/anthropic_completion).
|
|
|
|
This was a BETA endpoint that calls 100+ LLMs in the anthropic format.
|
|
"""
|
|
from litellm.proxy.proxy_server import (
|
|
general_settings,
|
|
llm_router,
|
|
proxy_config,
|
|
proxy_logging_obj,
|
|
user_api_base,
|
|
user_max_tokens,
|
|
user_model,
|
|
user_request_timeout,
|
|
user_temperature,
|
|
version,
|
|
)
|
|
|
|
request_data = await _read_request_body(request=request)
|
|
data: dict = {**request_data}
|
|
try:
|
|
data["model"] = (
|
|
general_settings.get("completion_model", None) # server default
|
|
or user_model # model name passed via cli args
|
|
or data.get("model", None) # default passed in http request
|
|
)
|
|
if user_model:
|
|
data["model"] = user_model
|
|
|
|
data = await add_litellm_data_to_request(
|
|
data=data, # type: ignore
|
|
request=request,
|
|
general_settings=general_settings,
|
|
user_api_key_dict=user_api_key_dict,
|
|
version=version,
|
|
proxy_config=proxy_config,
|
|
)
|
|
|
|
# override with user settings, these are params passed via cli
|
|
if user_temperature:
|
|
data["temperature"] = user_temperature
|
|
if user_request_timeout:
|
|
data["request_timeout"] = user_request_timeout
|
|
if user_max_tokens:
|
|
data["max_tokens"] = user_max_tokens
|
|
if user_api_base:
|
|
data["api_base"] = user_api_base
|
|
|
|
### MODEL ALIAS MAPPING ###
|
|
# check if model name in model alias map
|
|
# get the actual model name
|
|
if data["model"] in litellm.model_alias_map:
|
|
data["model"] = litellm.model_alias_map[data["model"]]
|
|
|
|
### CALL HOOKS ### - modify incoming data before calling the model
|
|
data = await proxy_logging_obj.pre_call_hook( # type: ignore
|
|
user_api_key_dict=user_api_key_dict, data=data, call_type="text_completion"
|
|
)
|
|
|
|
### ROUTE THE REQUESTs ###
|
|
router_model_names = llm_router.model_names if llm_router is not None else []
|
|
|
|
# skip router if user passed their key
|
|
if (
|
|
llm_router is not None and data["model"] in router_model_names
|
|
): # model in router model list
|
|
llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
|
|
elif (
|
|
llm_router is not None
|
|
and llm_router.model_group_alias is not None
|
|
and data["model"] in llm_router.model_group_alias
|
|
): # model set in model_group_alias
|
|
llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
|
|
elif (
|
|
llm_router is not None and data["model"] in llm_router.deployment_names
|
|
): # model in router deployments, calling a specific deployment on the router
|
|
llm_response = asyncio.create_task(
|
|
llm_router.aanthropic_messages(**data, specific_deployment=True)
|
|
)
|
|
elif (
|
|
llm_router is not None and data["model"] in llm_router.get_model_ids()
|
|
): # model in router model list
|
|
llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
|
|
elif (
|
|
llm_router is not None
|
|
and data["model"] not in router_model_names
|
|
and (
|
|
llm_router.default_deployment is not None
|
|
or len(llm_router.pattern_router.patterns) > 0
|
|
)
|
|
): # model in router deployments, calling a specific deployment on the router
|
|
llm_response = asyncio.create_task(llm_router.aanthropic_messages(**data))
|
|
elif user_model is not None: # `litellm --model <your-model-name>`
|
|
llm_response = asyncio.create_task(litellm.anthropic_messages(**data))
|
|
else:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_400_BAD_REQUEST,
|
|
detail={
|
|
"error": "completion: Invalid model name passed in model="
|
|
+ data.get("model", "")
|
|
},
|
|
)
|
|
|
|
# Await the llm_response task
|
|
response = await llm_response
|
|
|
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
|
model_id = hidden_params.get("model_id", None) or ""
|
|
cache_key = hidden_params.get("cache_key", None) or ""
|
|
api_base = hidden_params.get("api_base", None) or ""
|
|
response_cost = hidden_params.get("response_cost", None) or ""
|
|
|
|
### ALERTING ###
|
|
asyncio.create_task(
|
|
proxy_logging_obj.update_request_status(
|
|
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
|
)
|
|
)
|
|
|
|
verbose_proxy_logger.debug("final response: %s", response)
|
|
|
|
fastapi_response.headers.update(
|
|
ProxyBaseLLMRequestProcessing.get_custom_headers(
|
|
user_api_key_dict=user_api_key_dict,
|
|
model_id=model_id,
|
|
cache_key=cache_key,
|
|
api_base=api_base,
|
|
version=version,
|
|
response_cost=response_cost,
|
|
request_data=data,
|
|
hidden_params=hidden_params,
|
|
)
|
|
)
|
|
|
|
if (
|
|
"stream" in data and data["stream"] is True
|
|
): # use generate_responses to stream responses
|
|
selected_data_generator = async_data_generator_anthropic(
|
|
response=response,
|
|
user_api_key_dict=user_api_key_dict,
|
|
request_data=data,
|
|
proxy_logging_obj=proxy_logging_obj,
|
|
)
|
|
|
|
return StreamingResponse(
|
|
selected_data_generator, # type: ignore
|
|
media_type="text/event-stream",
|
|
)
|
|
|
|
verbose_proxy_logger.info("\nResponse from Litellm:\n{}".format(response))
|
|
return response
|
|
except Exception as e:
|
|
await proxy_logging_obj.post_call_failure_hook(
|
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
|
)
|
|
verbose_proxy_logger.exception(
|
|
"litellm.proxy.proxy_server.anthropic_response(): Exception occured - {}".format(
|
|
str(e)
|
|
)
|
|
)
|
|
error_msg = f"{str(e)}"
|
|
raise ProxyException(
|
|
message=getattr(e, "message", error_msg),
|
|
type=getattr(e, "type", "None"),
|
|
param=getattr(e, "param", "None"),
|
|
code=getattr(e, "status_code", 500),
|
|
)
|