mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
176 lines
5.4 KiB
Python
176 lines
5.4 KiB
Python
import os, types
|
|
import json
|
|
from enum import Enum
|
|
import requests
|
|
import time
|
|
from typing import Callable, Optional
|
|
import litellm
|
|
import httpx
|
|
from litellm.utils import ModelResponse, Usage
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
|
|
|
|
|
class CloudflareError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(method="POST", url="https://api.cloudflare.com")
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class CloudflareConfig:
|
|
max_tokens: Optional[int] = None
|
|
stream: Optional[bool] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_tokens: Optional[int] = None,
|
|
stream: Optional[bool] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
|
|
def validate_environment(api_key):
|
|
if api_key is None:
|
|
raise ValueError(
|
|
"Missing CloudflareError API Key - A call is being made to cloudflare but no key is set either in the environment variables or via params"
|
|
)
|
|
headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"Authorization": "Bearer " + api_key,
|
|
}
|
|
return headers
|
|
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
custom_prompt_dict={},
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
headers = validate_environment(api_key)
|
|
|
|
## Load Config
|
|
config = litellm.CloudflareConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in optional_params:
|
|
optional_params[k] = v
|
|
|
|
print_verbose(f"CUSTOM PROMPT DICT: {custom_prompt_dict}; model: {model}")
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", {}),
|
|
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
|
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
|
bos_token=model_prompt_details.get("bos_token", ""),
|
|
eos_token=model_prompt_details.get("eos_token", ""),
|
|
messages=messages,
|
|
)
|
|
|
|
# cloudflare adds the model to the api base
|
|
api_base = api_base + model
|
|
|
|
data = {
|
|
"messages": messages,
|
|
**optional_params,
|
|
}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"headers": headers,
|
|
"api_base": api_base,
|
|
"complete_input_dict": data,
|
|
},
|
|
)
|
|
|
|
## COMPLETION CALL
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
response = requests.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
stream=optional_params["stream"],
|
|
)
|
|
return response.iter_lines()
|
|
else:
|
|
response = requests.post(api_base, headers=headers, data=json.dumps(data))
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response.text}")
|
|
## RESPONSE OBJECT
|
|
if response.status_code != 200:
|
|
raise CloudflareError(
|
|
status_code=response.status_code, message=response.text
|
|
)
|
|
completion_response = response.json()
|
|
|
|
model_response["choices"][0]["message"]["content"] = completion_response[
|
|
"result"
|
|
]["response"]
|
|
|
|
## CALCULATING USAGE
|
|
print_verbose(
|
|
f"CALCULATING CLOUDFLARE TOKEN USAGE. Model Response: {model_response}; model_response['choices'][0]['message'].get('content', ''): {model_response['choices'][0]['message'].get('content', None)}"
|
|
)
|
|
prompt_tokens = litellm.utils.get_token_count(messages=messages, model=model)
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
)
|
|
|
|
model_response["created"] = int(time.time())
|
|
model_response["model"] = "cloudflare/" + model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
model_response.usage = usage
|
|
return model_response
|
|
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|