mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
212 lines
7.6 KiB
Python
212 lines
7.6 KiB
Python
import os, types, traceback
|
|
import json
|
|
from enum import Enum
|
|
import requests
|
|
import time, httpx
|
|
from typing import Callable, Optional
|
|
from litellm.utils import ModelResponse, Choices, Message
|
|
import litellm
|
|
|
|
|
|
class AI21Error(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST", url="https://api.ai21.com/studio/v1/"
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class AI21Config:
|
|
"""
|
|
Reference: https://docs.ai21.com/reference/j2-complete-ref
|
|
|
|
The class `AI21Config` provides configuration for the AI21's API interface. Below are the parameters:
|
|
|
|
- `numResults` (int32): Number of completions to sample and return. Optional, default is 1. If the temperature is greater than 0 (non-greedy decoding), a value greater than 1 can be meaningful.
|
|
|
|
- `maxTokens` (int32): The maximum number of tokens to generate per result. Optional, default is 16. If no `stopSequences` are given, generation stops after producing `maxTokens`.
|
|
|
|
- `minTokens` (int32): The minimum number of tokens to generate per result. Optional, default is 0. If `stopSequences` are given, they are ignored until `minTokens` are generated.
|
|
|
|
- `temperature` (float): Modifies the distribution from which tokens are sampled. Optional, default is 0.7. A value of 0 essentially disables sampling and results in greedy decoding.
|
|
|
|
- `topP` (float): Used for sampling tokens from the corresponding top percentile of probability mass. Optional, default is 1. For instance, a value of 0.9 considers only tokens comprising the top 90% probability mass.
|
|
|
|
- `stopSequences` (array of strings): Stops decoding if any of the input strings is generated. Optional.
|
|
|
|
- `topKReturn` (int32): Range between 0 to 10, including both. Optional, default is 0. Specifies the top-K alternative tokens to return. A non-zero value includes the string representations and log-probabilities for each of the top-K alternatives at each position.
|
|
|
|
- `frequencyPenalty` (object): Placeholder for frequency penalty object.
|
|
|
|
- `presencePenalty` (object): Placeholder for presence penalty object.
|
|
|
|
- `countPenalty` (object): Placeholder for count penalty object.
|
|
"""
|
|
|
|
numResults: Optional[int] = None
|
|
maxTokens: Optional[int] = None
|
|
minTokens: Optional[int] = None
|
|
temperature: Optional[float] = None
|
|
topP: Optional[float] = None
|
|
stopSequences: Optional[list] = None
|
|
topKReturn: Optional[int] = None
|
|
frequencePenalty: Optional[dict] = None
|
|
presencePenalty: Optional[dict] = None
|
|
countPenalty: Optional[dict] = None
|
|
|
|
def __init__(
|
|
self,
|
|
numResults: Optional[int] = None,
|
|
maxTokens: Optional[int] = None,
|
|
minTokens: Optional[int] = None,
|
|
temperature: Optional[float] = None,
|
|
topP: Optional[float] = None,
|
|
stopSequences: Optional[list] = None,
|
|
topKReturn: Optional[int] = None,
|
|
frequencePenalty: Optional[dict] = None,
|
|
presencePenalty: Optional[dict] = None,
|
|
countPenalty: Optional[dict] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
|
|
def validate_environment(api_key):
|
|
if api_key is None:
|
|
raise ValueError(
|
|
"Missing AI21 API Key - A call is being made to ai21 but no key is set either in the environment variables or via params"
|
|
)
|
|
headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"Authorization": "Bearer " + api_key,
|
|
}
|
|
return headers
|
|
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
headers = validate_environment(api_key)
|
|
model = model
|
|
prompt = ""
|
|
for message in messages:
|
|
if "role" in message:
|
|
if message["role"] == "user":
|
|
prompt += f"{message['content']}"
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
|
|
## Load Config
|
|
config = litellm.AI21Config.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > ai21_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
data = {
|
|
"prompt": prompt,
|
|
# "instruction": prompt, # some baseten models require the prompt to be passed in via the 'instruction' kwarg
|
|
**optional_params,
|
|
}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
## COMPLETION CALL
|
|
response = requests.post(
|
|
api_base + model + "/complete", headers=headers, data=json.dumps(data)
|
|
)
|
|
if response.status_code != 200:
|
|
raise AI21Error(status_code=response.status_code, message=response.text)
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
return response.iter_lines()
|
|
else:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
## RESPONSE OBJECT
|
|
completion_response = response.json()
|
|
try:
|
|
choices_list = []
|
|
for idx, item in enumerate(completion_response["completions"]):
|
|
if len(item["data"]["text"]) > 0:
|
|
message_obj = Message(content=item["data"]["text"])
|
|
else:
|
|
message_obj = Message(content=None)
|
|
choice_obj = Choices(
|
|
finish_reason=item["finishReason"]["reason"],
|
|
index=idx + 1,
|
|
message=message_obj,
|
|
)
|
|
choices_list.append(choice_obj)
|
|
model_response["choices"] = choices_list
|
|
except Exception as e:
|
|
raise AI21Error(
|
|
message=traceback.format_exc(), status_code=response.status_code
|
|
)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content"))
|
|
)
|
|
|
|
model_response["created"] = int(time.time())
|
|
model_response["model"] = model
|
|
model_response["usage"] = {
|
|
"prompt_tokens": prompt_tokens,
|
|
"completion_tokens": completion_tokens,
|
|
"total_tokens": prompt_tokens + completion_tokens,
|
|
}
|
|
return model_response
|
|
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|