mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
406 lines
12 KiB
Python
406 lines
12 KiB
Python
#### What this tests ####
|
|
# This tests the router's ability to pick deployment with lowest latency
|
|
|
|
import sys, os, asyncio, time, random
|
|
from datetime import datetime
|
|
import traceback
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
from litellm import Router
|
|
import litellm
|
|
from litellm.router_strategy.lowest_latency import LowestLatencyLoggingHandler
|
|
from litellm.caching import DualCache
|
|
|
|
### UNIT TESTS FOR LATENCY ROUTING ###
|
|
|
|
|
|
def test_latency_updated():
|
|
test_cache = DualCache()
|
|
model_list = []
|
|
lowest_latency_logger = LowestLatencyLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
deployment_id = "1234"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(5)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
latency_key = f"{model_group}_map"
|
|
assert (
|
|
end_time - start_time
|
|
== test_cache.get_cache(key=latency_key)[deployment_id]["latency"][0]
|
|
)
|
|
|
|
|
|
# test_tpm_rpm_updated()
|
|
|
|
|
|
def test_latency_updated_custom_ttl():
|
|
"""
|
|
Invalidate the cached request.
|
|
|
|
Test that the cache is empty
|
|
"""
|
|
test_cache = DualCache()
|
|
model_list = []
|
|
cache_time = 3
|
|
lowest_latency_logger = LowestLatencyLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list, routing_args={"ttl": cache_time}
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
deployment_id = "1234"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(5)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
latency_key = f"{model_group}_map"
|
|
print(f"cache: {test_cache.get_cache(key=latency_key)}")
|
|
assert isinstance(test_cache.get_cache(key=latency_key), dict)
|
|
time.sleep(cache_time)
|
|
assert test_cache.get_cache(key=latency_key) is None
|
|
|
|
|
|
def test_get_available_deployments():
|
|
test_cache = DualCache()
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "azure/chatgpt-v-2"},
|
|
"model_info": {"id": "1234"},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "azure/chatgpt-v-2"},
|
|
"model_info": {"id": "5678"},
|
|
},
|
|
]
|
|
lowest_latency_logger = LowestLatencyLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
## DEPLOYMENT 1 ##
|
|
deployment_id = "1234"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(3)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
## DEPLOYMENT 2 ##
|
|
deployment_id = "5678"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 20}}
|
|
time.sleep(2)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
|
|
## CHECK WHAT'S SELECTED ##
|
|
print(
|
|
lowest_latency_logger.get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)
|
|
)
|
|
assert (
|
|
lowest_latency_logger.get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)["model_info"]["id"]
|
|
== "5678"
|
|
)
|
|
|
|
|
|
# test_get_available_deployments()
|
|
|
|
|
|
def test_get_available_endpoints_tpm_rpm_check():
|
|
"""
|
|
Pass in list of 2 valid models
|
|
|
|
Update cache with 1 model clearly being at tpm/rpm limit
|
|
|
|
assert that only the valid model is returned
|
|
"""
|
|
test_cache = DualCache()
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "azure/chatgpt-v-2"},
|
|
"model_info": {"id": "1234", "rpm": 10},
|
|
},
|
|
{
|
|
"model_name": "gpt-3.5-turbo",
|
|
"litellm_params": {"model": "azure/chatgpt-v-2"},
|
|
"model_info": {"id": "5678", "rpm": 3},
|
|
},
|
|
]
|
|
lowest_latency_logger = LowestLatencyLoggingHandler(
|
|
router_cache=test_cache, model_list=model_list
|
|
)
|
|
model_group = "gpt-3.5-turbo"
|
|
## DEPLOYMENT 1 ##
|
|
deployment_id = "1234"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
for _ in range(3):
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(0.05)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
## DEPLOYMENT 2 ##
|
|
deployment_id = "5678"
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "gpt-3.5-turbo",
|
|
"deployment": "azure/chatgpt-v-2",
|
|
},
|
|
"model_info": {"id": deployment_id},
|
|
}
|
|
}
|
|
for _ in range(3):
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 20}}
|
|
time.sleep(2)
|
|
end_time = time.time()
|
|
lowest_latency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
|
|
## CHECK WHAT'S SELECTED ##
|
|
print(
|
|
lowest_latency_logger.get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)
|
|
)
|
|
assert (
|
|
lowest_latency_logger.get_available_deployments(
|
|
model_group=model_group, healthy_deployments=model_list
|
|
)["model_info"]["id"]
|
|
== "1234"
|
|
)
|
|
|
|
|
|
def test_router_get_available_deployments():
|
|
"""
|
|
Test if routers 'get_available_deployments' returns the fastest deployment
|
|
"""
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
routing_strategy="latency-based-routing",
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
## DEPLOYMENT 1 ##
|
|
deployment_id = 1
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "azure-model",
|
|
},
|
|
"model_info": {"id": 1},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 50}}
|
|
time.sleep(3)
|
|
end_time = time.time()
|
|
router.lowestlatency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
## DEPLOYMENT 2 ##
|
|
deployment_id = 2
|
|
kwargs = {
|
|
"litellm_params": {
|
|
"metadata": {
|
|
"model_group": "azure-model",
|
|
},
|
|
"model_info": {"id": 2},
|
|
}
|
|
}
|
|
start_time = time.time()
|
|
response_obj = {"usage": {"total_tokens": 20}}
|
|
time.sleep(2)
|
|
end_time = time.time()
|
|
router.lowestlatency_logger.log_success_event(
|
|
response_obj=response_obj,
|
|
kwargs=kwargs,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
|
|
## CHECK WHAT'S SELECTED ##
|
|
# print(router.lowesttpm_logger.get_available_deployments(model_group="azure-model"))
|
|
print(router.get_available_deployment(model="azure-model"))
|
|
assert router.get_available_deployment(model="azure-model")["model_info"]["id"] == 2
|
|
|
|
|
|
# test_router_get_available_deployments()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_router_completion_streaming():
|
|
messages = [
|
|
{"role": "user", "content": "Hello, can you generate a 500 words poem?"}
|
|
]
|
|
model = "azure-model"
|
|
model_list = [
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-turbo",
|
|
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
|
|
"api_base": "https://openai-france-1234.openai.azure.com",
|
|
"rpm": 1440,
|
|
},
|
|
"model_info": {"id": 1},
|
|
},
|
|
{
|
|
"model_name": "azure-model",
|
|
"litellm_params": {
|
|
"model": "azure/gpt-35-turbo",
|
|
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
|
|
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
|
|
"rpm": 6,
|
|
},
|
|
"model_info": {"id": 2},
|
|
},
|
|
]
|
|
router = Router(
|
|
model_list=model_list,
|
|
routing_strategy="latency-based-routing",
|
|
set_verbose=False,
|
|
num_retries=3,
|
|
) # type: ignore
|
|
|
|
### Make 3 calls, test if 3rd call goes to fastest deployment
|
|
|
|
## CALL 1+2
|
|
tasks = []
|
|
response = None
|
|
final_response = None
|
|
for _ in range(2):
|
|
tasks.append(router.acompletion(model=model, messages=messages))
|
|
response = await asyncio.gather(*tasks)
|
|
|
|
if response is not None:
|
|
## CALL 3
|
|
await asyncio.sleep(1) # let the cache update happen
|
|
picked_deployment = router.lowestlatency_logger.get_available_deployments(
|
|
model_group=model, healthy_deployments=router.healthy_deployments
|
|
)
|
|
final_response = await router.acompletion(model=model, messages=messages)
|
|
print(f"min deployment id: {picked_deployment}")
|
|
print(f"model id: {final_response._hidden_params['model_id']}")
|
|
assert (
|
|
final_response._hidden_params["model_id"]
|
|
== picked_deployment["model_info"]["id"]
|
|
)
|
|
|
|
|
|
# asyncio.run(test_router_completion_streaming())
|