litellm-mirror/litellm/tests/test_lowest_latency_routing.py

406 lines
12 KiB
Python

#### What this tests ####
# This tests the router's ability to pick deployment with lowest latency
import sys, os, asyncio, time, random
from datetime import datetime
import traceback
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
from litellm import Router
import litellm
from litellm.router_strategy.lowest_latency import LowestLatencyLoggingHandler
from litellm.caching import DualCache
### UNIT TESTS FOR LATENCY ROUTING ###
def test_latency_updated():
test_cache = DualCache()
model_list = []
lowest_latency_logger = LowestLatencyLoggingHandler(
router_cache=test_cache, model_list=model_list
)
model_group = "gpt-3.5-turbo"
deployment_id = "1234"
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
"deployment": "azure/chatgpt-v-2",
},
"model_info": {"id": deployment_id},
}
}
start_time = time.time()
response_obj = {"usage": {"total_tokens": 50}}
time.sleep(5)
end_time = time.time()
lowest_latency_logger.log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
latency_key = f"{model_group}_map"
assert (
end_time - start_time
== test_cache.get_cache(key=latency_key)[deployment_id]["latency"][0]
)
# test_tpm_rpm_updated()
def test_latency_updated_custom_ttl():
"""
Invalidate the cached request.
Test that the cache is empty
"""
test_cache = DualCache()
model_list = []
cache_time = 3
lowest_latency_logger = LowestLatencyLoggingHandler(
router_cache=test_cache, model_list=model_list, routing_args={"ttl": cache_time}
)
model_group = "gpt-3.5-turbo"
deployment_id = "1234"
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
"deployment": "azure/chatgpt-v-2",
},
"model_info": {"id": deployment_id},
}
}
start_time = time.time()
response_obj = {"usage": {"total_tokens": 50}}
time.sleep(5)
end_time = time.time()
lowest_latency_logger.log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
latency_key = f"{model_group}_map"
print(f"cache: {test_cache.get_cache(key=latency_key)}")
assert isinstance(test_cache.get_cache(key=latency_key), dict)
time.sleep(cache_time)
assert test_cache.get_cache(key=latency_key) is None
def test_get_available_deployments():
test_cache = DualCache()
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "azure/chatgpt-v-2"},
"model_info": {"id": "1234"},
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "azure/chatgpt-v-2"},
"model_info": {"id": "5678"},
},
]
lowest_latency_logger = LowestLatencyLoggingHandler(
router_cache=test_cache, model_list=model_list
)
model_group = "gpt-3.5-turbo"
## DEPLOYMENT 1 ##
deployment_id = "1234"
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
"deployment": "azure/chatgpt-v-2",
},
"model_info": {"id": deployment_id},
}
}
start_time = time.time()
response_obj = {"usage": {"total_tokens": 50}}
time.sleep(3)
end_time = time.time()
lowest_latency_logger.log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
## DEPLOYMENT 2 ##
deployment_id = "5678"
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
"deployment": "azure/chatgpt-v-2",
},
"model_info": {"id": deployment_id},
}
}
start_time = time.time()
response_obj = {"usage": {"total_tokens": 20}}
time.sleep(2)
end_time = time.time()
lowest_latency_logger.log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
## CHECK WHAT'S SELECTED ##
print(
lowest_latency_logger.get_available_deployments(
model_group=model_group, healthy_deployments=model_list
)
)
assert (
lowest_latency_logger.get_available_deployments(
model_group=model_group, healthy_deployments=model_list
)["model_info"]["id"]
== "5678"
)
# test_get_available_deployments()
def test_get_available_endpoints_tpm_rpm_check():
"""
Pass in list of 2 valid models
Update cache with 1 model clearly being at tpm/rpm limit
assert that only the valid model is returned
"""
test_cache = DualCache()
model_list = [
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "azure/chatgpt-v-2"},
"model_info": {"id": "1234", "rpm": 10},
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "azure/chatgpt-v-2"},
"model_info": {"id": "5678", "rpm": 3},
},
]
lowest_latency_logger = LowestLatencyLoggingHandler(
router_cache=test_cache, model_list=model_list
)
model_group = "gpt-3.5-turbo"
## DEPLOYMENT 1 ##
deployment_id = "1234"
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
"deployment": "azure/chatgpt-v-2",
},
"model_info": {"id": deployment_id},
}
}
for _ in range(3):
start_time = time.time()
response_obj = {"usage": {"total_tokens": 50}}
time.sleep(0.05)
end_time = time.time()
lowest_latency_logger.log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
## DEPLOYMENT 2 ##
deployment_id = "5678"
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
"deployment": "azure/chatgpt-v-2",
},
"model_info": {"id": deployment_id},
}
}
for _ in range(3):
start_time = time.time()
response_obj = {"usage": {"total_tokens": 20}}
time.sleep(2)
end_time = time.time()
lowest_latency_logger.log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
## CHECK WHAT'S SELECTED ##
print(
lowest_latency_logger.get_available_deployments(
model_group=model_group, healthy_deployments=model_list
)
)
assert (
lowest_latency_logger.get_available_deployments(
model_group=model_group, healthy_deployments=model_list
)["model_info"]["id"]
== "1234"
)
def test_router_get_available_deployments():
"""
Test if routers 'get_available_deployments' returns the fastest deployment
"""
model_list = [
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-turbo",
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
"api_base": "https://openai-france-1234.openai.azure.com",
"rpm": 1440,
},
"model_info": {"id": 1},
},
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-35-turbo",
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
"rpm": 6,
},
"model_info": {"id": 2},
},
]
router = Router(
model_list=model_list,
routing_strategy="latency-based-routing",
set_verbose=False,
num_retries=3,
) # type: ignore
## DEPLOYMENT 1 ##
deployment_id = 1
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "azure-model",
},
"model_info": {"id": 1},
}
}
start_time = time.time()
response_obj = {"usage": {"total_tokens": 50}}
time.sleep(3)
end_time = time.time()
router.lowestlatency_logger.log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
## DEPLOYMENT 2 ##
deployment_id = 2
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "azure-model",
},
"model_info": {"id": 2},
}
}
start_time = time.time()
response_obj = {"usage": {"total_tokens": 20}}
time.sleep(2)
end_time = time.time()
router.lowestlatency_logger.log_success_event(
response_obj=response_obj,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
)
## CHECK WHAT'S SELECTED ##
# print(router.lowesttpm_logger.get_available_deployments(model_group="azure-model"))
print(router.get_available_deployment(model="azure-model"))
assert router.get_available_deployment(model="azure-model")["model_info"]["id"] == 2
# test_router_get_available_deployments()
@pytest.mark.asyncio
async def test_router_completion_streaming():
messages = [
{"role": "user", "content": "Hello, can you generate a 500 words poem?"}
]
model = "azure-model"
model_list = [
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-turbo",
"api_key": "os.environ/AZURE_FRANCE_API_KEY",
"api_base": "https://openai-france-1234.openai.azure.com",
"rpm": 1440,
},
"model_info": {"id": 1},
},
{
"model_name": "azure-model",
"litellm_params": {
"model": "azure/gpt-35-turbo",
"api_key": "os.environ/AZURE_EUROPE_API_KEY",
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com",
"rpm": 6,
},
"model_info": {"id": 2},
},
]
router = Router(
model_list=model_list,
routing_strategy="latency-based-routing",
set_verbose=False,
num_retries=3,
) # type: ignore
### Make 3 calls, test if 3rd call goes to fastest deployment
## CALL 1+2
tasks = []
response = None
final_response = None
for _ in range(2):
tasks.append(router.acompletion(model=model, messages=messages))
response = await asyncio.gather(*tasks)
if response is not None:
## CALL 3
await asyncio.sleep(1) # let the cache update happen
picked_deployment = router.lowestlatency_logger.get_available_deployments(
model_group=model, healthy_deployments=router.healthy_deployments
)
final_response = await router.acompletion(model=model, messages=messages)
print(f"min deployment id: {picked_deployment}")
print(f"model id: {final_response._hidden_params['model_id']}")
assert (
final_response._hidden_params["model_id"]
== picked_deployment["model_info"]["id"]
)
# asyncio.run(test_router_completion_streaming())