litellm-mirror/litellm/tests/test_proxy_exception_mapping.py

245 lines
8.1 KiB
Python

# test that the proxy actually does exception mapping to the OpenAI format
import sys, os
from dotenv import load_dotenv
load_dotenv()
import os, io, asyncio
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm, openai
from fastapi.testclient import TestClient
from fastapi import FastAPI
from litellm.proxy.proxy_server import (
router,
save_worker_config,
initialize,
) # Replace with the actual module where your FastAPI router is defined
@pytest.fixture
def client():
filepath = os.path.dirname(os.path.abspath(__file__))
config_fp = f"{filepath}/test_configs/test_bad_config.yaml"
asyncio.run(initialize(config=config_fp))
from litellm.proxy.proxy_server import app
return TestClient(app)
# raise openai.AuthenticationError
def test_chat_completion_exception(client):
try:
# Your test data
test_data = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "hi"},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
assert isinstance(openai_exception, openai.AuthenticationError)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# raise openai.AuthenticationError
def test_chat_completion_exception_azure(client):
try:
# Your test data
test_data = {
"model": "azure-gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "hi"},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print(openai_exception)
assert isinstance(openai_exception, openai.AuthenticationError)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# raise openai.AuthenticationError
def test_embedding_auth_exception_azure(client):
try:
# Your test data
test_data = {"model": "azure-embedding", "input": ["hi"]}
response = client.post("/embeddings", json=test_data)
print("Response from proxy=", response)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print("Exception raised=", openai_exception)
assert isinstance(openai_exception, openai.AuthenticationError)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# raise openai.BadRequestError
# chat/completions openai
def test_exception_openai_bad_model(client):
try:
# Your test data
test_data = {
"model": "azure/GPT-12",
"messages": [
{"role": "user", "content": "hi"},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print("Type of exception=", type(openai_exception))
assert isinstance(openai_exception, openai.NotFoundError)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# chat/completions any model
def test_chat_completion_exception_any_model(client):
try:
# Your test data
test_data = {
"model": "Lite-GPT-12",
"messages": [
{"role": "user", "content": "hi"},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print("Exception raised=", openai_exception)
assert isinstance(openai_exception, openai.BadRequestError)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# embeddings any model
def test_embedding_exception_any_model(client):
try:
# Your test data
test_data = {"model": "Lite-GPT-12", "input": ["hi"]}
response = client.post("/embeddings", json=test_data)
print("Response from proxy=", response)
print(response.json())
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print("Exception raised=", openai_exception)
assert isinstance(openai_exception, openai.BadRequestError)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# raise openai.BadRequestError
def test_chat_completion_exception_azure_context_window(client):
try:
# Your test data
test_data = {
"model": "working-azure-gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "hi" * 10000},
],
"max_tokens": 10,
}
response = None
response = client.post("/chat/completions", json=test_data)
print("got response from server", response)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
assert json_response == {
"error": {
"message": "AzureException - Error code: 400 - {'error': {'message': \"This model's maximum context length is 4096 tokens. However, your messages resulted in 10007 tokens. Please reduce the length of the messages.\", 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}}",
"type": None,
"param": None,
"code": 400,
}
}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print("exception from proxy", openai_exception)
assert isinstance(openai_exception, openai.BadRequestError)
print("passed exception is of type BadRequestError")
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")