mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
304 lines
12 KiB
Python
304 lines
12 KiB
Python
import os, types
|
|
import json
|
|
from enum import Enum
|
|
import requests
|
|
import time
|
|
from typing import Callable, Optional
|
|
import litellm
|
|
from litellm.utils import ModelResponse, Choices, Message, Usage
|
|
import httpx
|
|
|
|
|
|
class AlephAlphaError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST", url="https://api.aleph-alpha.com/complete"
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class AlephAlphaConfig:
|
|
"""
|
|
Reference: https://docs.aleph-alpha.com/api/complete/
|
|
|
|
The `AlephAlphaConfig` class represents the configuration for the Aleph Alpha API. Here are the properties:
|
|
|
|
- `maximum_tokens` (integer, required): The maximum number of tokens to be generated by the completion. The sum of input tokens and maximum tokens may not exceed 2048.
|
|
|
|
- `minimum_tokens` (integer, optional; default value: 0): Generate at least this number of tokens before an end-of-text token is generated.
|
|
|
|
- `echo` (boolean, optional; default value: false): Whether to echo the prompt in the completion.
|
|
|
|
- `temperature` (number, nullable; default value: 0): Adjusts how creatively the model generates outputs. Use combinations of temperature, top_k, and top_p sensibly.
|
|
|
|
- `top_k` (integer, nullable; default value: 0): Introduces randomness into token generation by considering the top k most likely options.
|
|
|
|
- `top_p` (number, nullable; default value: 0): Adds randomness by considering the smallest set of tokens whose cumulative probability exceeds top_p.
|
|
|
|
- `presence_penalty`, `frequency_penalty`, `sequence_penalty` (number, nullable; default value: 0): Various penalties that can reduce repetition.
|
|
|
|
- `sequence_penalty_min_length` (integer; default value: 2): Minimum number of tokens to be considered as a sequence.
|
|
|
|
- `repetition_penalties_include_prompt`, `repetition_penalties_include_completion`, `use_multiplicative_presence_penalty`,`use_multiplicative_frequency_penalty`,`use_multiplicative_sequence_penalty` (boolean, nullable; default value: false): Various settings that adjust how the repetition penalties are applied.
|
|
|
|
- `penalty_bias` (string, nullable): Text used in addition to the penalized tokens for repetition penalties.
|
|
|
|
- `penalty_exceptions` (string[], nullable): Strings that may be generated without penalty.
|
|
|
|
- `penalty_exceptions_include_stop_sequences` (boolean, nullable; default value: true): Include all stop_sequences in penalty_exceptions.
|
|
|
|
- `best_of` (integer, nullable; default value: 1): The number of completions will be generated on the server side.
|
|
|
|
- `n` (integer, nullable; default value: 1): The number of completions to return.
|
|
|
|
- `logit_bias` (object, nullable): Adjust the logit scores before sampling.
|
|
|
|
- `log_probs` (integer, nullable): Number of top log probabilities for each token generated.
|
|
|
|
- `stop_sequences` (string[], nullable): List of strings that will stop generation if they're generated.
|
|
|
|
- `tokens` (boolean, nullable; default value: false): Flag indicating whether individual tokens of the completion should be returned or not.
|
|
|
|
- `raw_completion` (boolean; default value: false): if True, the raw completion of the model will be returned.
|
|
|
|
- `disable_optimizations` (boolean, nullable; default value: false): Disables any applied optimizations to both your prompt and completion.
|
|
|
|
- `completion_bias_inclusion`, `completion_bias_exclusion` (string[], default value: []): Set of strings to bias the generation of tokens.
|
|
|
|
- `completion_bias_inclusion_first_token_only`, `completion_bias_exclusion_first_token_only` (boolean; default value: false): Consider only the first token for the completion_bias_inclusion/exclusion.
|
|
|
|
- `contextual_control_threshold` (number, nullable): Control over how similar tokens are controlled.
|
|
|
|
- `control_log_additive` (boolean; default value: true): Method of applying control to attention scores.
|
|
"""
|
|
|
|
maximum_tokens: Optional[
|
|
int
|
|
] = litellm.max_tokens # aleph alpha requires max tokens
|
|
minimum_tokens: Optional[int] = None
|
|
echo: Optional[bool] = None
|
|
temperature: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
top_p: Optional[int] = None
|
|
presence_penalty: Optional[int] = None
|
|
frequency_penalty: Optional[int] = None
|
|
sequence_penalty: Optional[int] = None
|
|
sequence_penalty_min_length: Optional[int] = None
|
|
repetition_penalties_include_prompt: Optional[bool] = None
|
|
repetition_penalties_include_completion: Optional[bool] = None
|
|
use_multiplicative_presence_penalty: Optional[bool] = None
|
|
use_multiplicative_frequency_penalty: Optional[bool] = None
|
|
use_multiplicative_sequence_penalty: Optional[bool] = None
|
|
penalty_bias: Optional[str] = None
|
|
penalty_exceptions_include_stop_sequences: Optional[bool] = None
|
|
best_of: Optional[int] = None
|
|
n: Optional[int] = None
|
|
logit_bias: Optional[dict] = None
|
|
log_probs: Optional[int] = None
|
|
stop_sequences: Optional[list] = None
|
|
tokens: Optional[bool] = None
|
|
raw_completion: Optional[bool] = None
|
|
disable_optimizations: Optional[bool] = None
|
|
completion_bias_inclusion: Optional[list] = None
|
|
completion_bias_exclusion: Optional[list] = None
|
|
completion_bias_inclusion_first_token_only: Optional[bool] = None
|
|
completion_bias_exclusion_first_token_only: Optional[bool] = None
|
|
contextual_control_threshold: Optional[int] = None
|
|
control_log_additive: Optional[bool] = None
|
|
|
|
def __init__(
|
|
self,
|
|
maximum_tokens: Optional[int] = None,
|
|
minimum_tokens: Optional[int] = None,
|
|
echo: Optional[bool] = None,
|
|
temperature: Optional[int] = None,
|
|
top_k: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
presence_penalty: Optional[int] = None,
|
|
frequency_penalty: Optional[int] = None,
|
|
sequence_penalty: Optional[int] = None,
|
|
sequence_penalty_min_length: Optional[int] = None,
|
|
repetition_penalties_include_prompt: Optional[bool] = None,
|
|
repetition_penalties_include_completion: Optional[bool] = None,
|
|
use_multiplicative_presence_penalty: Optional[bool] = None,
|
|
use_multiplicative_frequency_penalty: Optional[bool] = None,
|
|
use_multiplicative_sequence_penalty: Optional[bool] = None,
|
|
penalty_bias: Optional[str] = None,
|
|
penalty_exceptions_include_stop_sequences: Optional[bool] = None,
|
|
best_of: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
logit_bias: Optional[dict] = None,
|
|
log_probs: Optional[int] = None,
|
|
stop_sequences: Optional[list] = None,
|
|
tokens: Optional[bool] = None,
|
|
raw_completion: Optional[bool] = None,
|
|
disable_optimizations: Optional[bool] = None,
|
|
completion_bias_inclusion: Optional[list] = None,
|
|
completion_bias_exclusion: Optional[list] = None,
|
|
completion_bias_inclusion_first_token_only: Optional[bool] = None,
|
|
completion_bias_exclusion_first_token_only: Optional[bool] = None,
|
|
contextual_control_threshold: Optional[int] = None,
|
|
control_log_additive: Optional[bool] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
|
|
def validate_environment(api_key):
|
|
headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
return headers
|
|
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
default_max_tokens_to_sample=None,
|
|
):
|
|
headers = validate_environment(api_key)
|
|
|
|
## Load Config
|
|
config = litellm.AlephAlphaConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > aleph_alpha_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
completion_url = api_base
|
|
model = model
|
|
prompt = ""
|
|
if "control" in model: # follow the ###Instruction / ###Response format
|
|
for idx, message in enumerate(messages):
|
|
if "role" in message:
|
|
if (
|
|
idx == 0
|
|
): # set first message as instruction (required), let later user messages be input
|
|
prompt += f"###Instruction: {message['content']}"
|
|
else:
|
|
if message["role"] == "system":
|
|
prompt += f"###Instruction: {message['content']}"
|
|
elif message["role"] == "user":
|
|
prompt += f"###Input: {message['content']}"
|
|
else:
|
|
prompt += f"###Response: {message['content']}"
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
else:
|
|
prompt = " ".join(message["content"] for message in messages)
|
|
data = {
|
|
"model": model,
|
|
"prompt": prompt,
|
|
**optional_params,
|
|
}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
## COMPLETION CALL
|
|
response = requests.post(
|
|
completion_url,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
stream=optional_params["stream"] if "stream" in optional_params else False,
|
|
)
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
return response.iter_lines()
|
|
else:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response.text}")
|
|
## RESPONSE OBJECT
|
|
completion_response = response.json()
|
|
if "error" in completion_response:
|
|
raise AlephAlphaError(
|
|
message=completion_response["error"],
|
|
status_code=response.status_code,
|
|
)
|
|
else:
|
|
try:
|
|
choices_list = []
|
|
for idx, item in enumerate(completion_response["completions"]):
|
|
if len(item["completion"]) > 0:
|
|
message_obj = Message(content=item["completion"])
|
|
else:
|
|
message_obj = Message(content=None)
|
|
choice_obj = Choices(
|
|
finish_reason=item["finish_reason"],
|
|
index=idx + 1,
|
|
message=message_obj,
|
|
)
|
|
choices_list.append(choice_obj)
|
|
model_response["choices"] = choices_list
|
|
except:
|
|
raise AlephAlphaError(
|
|
message=json.dumps(completion_response),
|
|
status_code=response.status_code,
|
|
)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"]["content"])
|
|
)
|
|
|
|
model_response["created"] = int(time.time())
|
|
model_response["model"] = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
model_response.usage = usage
|
|
return model_response
|
|
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|