litellm-mirror/litellm/tests/test_router_fallbacks.py
2024-01-22 14:21:30 -08:00

904 lines
34 KiB
Python

#### What this tests ####
# This tests calling router with fallback models
import sys, os, time
import traceback, asyncio
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import Router
from litellm.integrations.custom_logger import CustomLogger
class MyCustomHandler(CustomLogger):
success: bool = False
failure: bool = False
previous_models: int = 0
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
print(
f"previous_models: {kwargs['litellm_params']['metadata']['previous_models']}"
)
self.previous_models += len(
kwargs["litellm_params"]["metadata"]["previous_models"]
) # {"previous_models": [{"model": litellm_model_name, "exception_type": AuthenticationError, "exception_string": <complete_traceback>}]}
print(f"self.previous_models: {self.previous_models}")
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(
f"Post-API Call - response object: {response_obj}; model: {kwargs['model']}"
)
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def async_log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
kwargs = {
"model": "azure/gpt-3.5-turbo",
"messages": [{"role": "user", "content": "Hey, how's it going?"}],
}
def test_sync_fallbacks():
try:
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
]
litellm.set_verbose = True
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
router = Router(
model_list=model_list,
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
context_window_fallbacks=[
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
],
set_verbose=False,
)
response = router.completion(**kwargs)
print(f"response: {response}")
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
print("Passed ! Test router_fallbacks: test_sync_fallbacks()")
router.reset()
except Exception as e:
print(e)
# test_sync_fallbacks()
@pytest.mark.asyncio
async def test_async_fallbacks():
litellm.set_verbose = False
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
]
router = Router(
model_list=model_list,
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
context_window_fallbacks=[
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
],
set_verbose=False,
)
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
try:
response = await router.acompletion(**kwargs)
print(f"customHandler.previous_models: {customHandler.previous_models}")
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
router.reset()
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred: {e}")
finally:
router.reset()
# test_async_fallbacks()
@pytest.mark.asyncio
async def test_async_fallbacks_embeddings():
litellm.set_verbose = False
model_list = [
{ # list of model deployments
"model_name": "bad-azure-embedding-model", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/azure-embedding-model",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{ # list of model deployments
"model_name": "good-azure-embedding-model", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/azure-embedding-model",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
]
router = Router(
model_list=model_list,
fallbacks=[{"bad-azure-embedding-model": ["good-azure-embedding-model"]}],
set_verbose=False,
)
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
user_message = "Hello, how are you?"
input = [user_message]
try:
kwargs = {"model": "bad-azure-embedding-model", "input": input}
response = await router.aembedding(**kwargs)
print(f"customHandler.previous_models: {customHandler.previous_models}")
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
router.reset()
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred: {e}")
finally:
router.reset()
def test_dynamic_fallbacks_sync():
"""
Allow setting the fallback in the router.completion() call.
"""
try:
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
]
router = Router(model_list=model_list, set_verbose=True)
kwargs = {}
kwargs["model"] = "azure/gpt-3.5-turbo"
kwargs["messages"] = [{"role": "user", "content": "Hey, how's it going?"}]
kwargs["fallbacks"] = [{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}]
response = router.completion(**kwargs)
print(f"response: {response}")
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
router.reset()
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
# test_dynamic_fallbacks_sync()
@pytest.mark.asyncio
async def test_dynamic_fallbacks_async():
"""
Allow setting the fallback in the router.completion() call.
"""
try:
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
]
print()
print()
print()
print()
print(f"STARTING DYNAMIC ASYNC")
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
router = Router(model_list=model_list, set_verbose=True)
kwargs = {}
kwargs["model"] = "azure/gpt-3.5-turbo"
kwargs["messages"] = [{"role": "user", "content": "Hey, how's it going?"}]
kwargs["fallbacks"] = [{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}]
response = await router.acompletion(**kwargs)
print(f"RESPONSE: {response}")
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
router.reset()
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
# asyncio.run(test_dynamic_fallbacks_async())
@pytest.mark.asyncio
async def test_async_fallbacks_streaming():
litellm.set_verbose = False
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
]
router = Router(
model_list=model_list,
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
context_window_fallbacks=[
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
],
set_verbose=False,
)
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
try:
response = await router.acompletion(**kwargs, stream=True)
print(f"customHandler.previous_models: {customHandler.previous_models}")
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
router.reset()
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred: {e}")
finally:
router.reset()
def test_sync_fallbacks_streaming():
try:
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
]
litellm.set_verbose = True
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
router = Router(
model_list=model_list,
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
context_window_fallbacks=[
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
],
set_verbose=False,
)
response = router.completion(**kwargs, stream=True)
print(f"response: {response}")
time.sleep(0.05) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 1 # 0 retries, 1 fallback
print("Passed ! Test router_fallbacks: test_sync_fallbacks()")
router.reset()
except Exception as e:
print(e)
@pytest.mark.asyncio
async def test_async_fallbacks_max_retries_per_request():
litellm.set_verbose = False
litellm.num_retries_per_request = 0
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 240000,
"rpm": 1800,
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000,
},
]
router = Router(
model_list=model_list,
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
context_window_fallbacks=[
{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]},
{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]},
],
set_verbose=False,
)
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
try:
try:
response = await router.acompletion(**kwargs, stream=True)
except:
pass
print(f"customHandler.previous_models: {customHandler.previous_models}")
await asyncio.sleep(
0.05
) # allow a delay as success_callbacks are on a separate thread
assert customHandler.previous_models == 0 # 0 retries, 0 fallback
router.reset()
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred: {e}")
finally:
router.reset()
def test_usage_based_routing_fallbacks():
try:
# [Prod Test]
# IT tests Usage Based Routing with fallbacks
# The Request should fail azure/gpt-4-fast. Then fallback -> "azure/gpt-4-basic" -> "openai-gpt-4"
# It should work with "openai-gpt-4"
import os
import litellm
from litellm import Router
from dotenv import load_dotenv
load_dotenv()
# Constants for TPM and RPM allocation
AZURE_FAST_TPM = 3
AZURE_BASIC_TPM = 4
OPENAI_TPM = 400
ANTHROPIC_TPM = 100000
def get_azure_params(deployment_name: str):
params = {
"model": f"azure/{deployment_name}",
"api_key": os.environ["AZURE_API_KEY"],
"api_version": os.environ["AZURE_API_VERSION"],
"api_base": os.environ["AZURE_API_BASE"],
}
return params
def get_openai_params(model: str):
params = {
"model": model,
"api_key": os.environ["OPENAI_API_KEY"],
}
return params
def get_anthropic_params(model: str):
params = {
"model": model,
"api_key": os.environ["ANTHROPIC_API_KEY"],
}
return params
model_list = [
{
"model_name": "azure/gpt-4-fast",
"litellm_params": get_azure_params("chatgpt-v-2"),
"tpm": AZURE_FAST_TPM,
},
{
"model_name": "azure/gpt-4-basic",
"litellm_params": get_azure_params("chatgpt-v-2"),
"tpm": AZURE_BASIC_TPM,
},
{
"model_name": "openai-gpt-4",
"litellm_params": get_openai_params("gpt-3.5-turbo"),
"tpm": OPENAI_TPM,
},
{
"model_name": "anthropic-claude-instant-1.2",
"litellm_params": get_anthropic_params("claude-instant-1.2"),
"tpm": ANTHROPIC_TPM,
},
]
# litellm.set_verbose=True
fallbacks_list = [
{"azure/gpt-4-fast": ["azure/gpt-4-basic"]},
{"azure/gpt-4-basic": ["openai-gpt-4"]},
{"openai-gpt-4": ["anthropic-claude-instant-1.2"]},
]
router = Router(
model_list=model_list,
fallbacks=fallbacks_list,
set_verbose=True,
debug_level="DEBUG",
routing_strategy="usage-based-routing",
redis_host=os.environ["REDIS_HOST"],
redis_port=os.environ["REDIS_PORT"],
)
messages = [
{"content": "Tell me a joke.", "role": "user"},
]
response = router.completion(
model="azure/gpt-4-fast",
messages=messages,
timeout=5,
mock_response="very nice to meet you",
)
print("response: ", response)
print("response._hidden_params: ", response._hidden_params)
# in this test, we expect azure/gpt-4 fast to fail, then azure-gpt-4 basic to fail and then openai-gpt-4 to pass
# the token count of this message is > AZURE_FAST_TPM, > AZURE_BASIC_TPM
assert response._hidden_params["custom_llm_provider"] == "openai"
# now make 100 mock requests to OpenAI - expect it to fallback to anthropic-claude-instant-1.2
for i in range(20):
response = router.completion(
model="azure/gpt-4-fast",
messages=messages,
timeout=5,
mock_response="very nice to meet you",
)
print("response: ", response)
print("response._hidden_params: ", response._hidden_params)
if i == 19:
# by the 19th call we should have hit TPM LIMIT for OpenAI, it should fallback to anthropic-claude-instant-1.2
assert response._hidden_params["custom_llm_provider"] == "anthropic"
except Exception as e:
pytest.fail(f"An exception occurred {e}")
def test_custom_cooldown_times():
try:
# set, custom_cooldown. Failed model in cooldown_models, after custom_cooldown, the failed model is no longer in cooldown_models
model_list = [
{ # list of model deployments
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 24000000,
},
{ # list of model deployments
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
},
"tpm": 1,
},
]
litellm.set_verbose = False
router = Router(
model_list=model_list,
set_verbose=True,
debug_level="INFO",
cooldown_time=0.1,
redis_host=os.getenv("REDIS_HOST"),
redis_password=os.getenv("REDIS_PASSWORD"),
redis_port=int(os.getenv("REDIS_PORT")),
)
# make a request - expect it to fail
try:
response = router.completion(
model="gpt-3.5-turbo",
messages=[
{
"content": "Tell me a joke.",
"role": "user",
}
],
)
except:
pass
# expect 1 model to be in cooldown models
cooldown_deployments = router._get_cooldown_deployments()
print("cooldown_deployments after failed call: ", cooldown_deployments)
assert (
len(cooldown_deployments) == 1
), "Expected 1 model to be in cooldown models"
selected_cooldown_model = cooldown_deployments[0]
# wait for 1/2 of cooldown time
time.sleep(router.cooldown_time / 2)
# expect cooldown model to still be in cooldown models
cooldown_deployments = router._get_cooldown_deployments()
print(
"cooldown_deployments after waiting 1/2 of cooldown: ", cooldown_deployments
)
assert (
len(cooldown_deployments) == 1
), "Expected 1 model to be in cooldown models"
# wait for 1/2 of cooldown time again, now we've waited for full cooldown
time.sleep(router.cooldown_time / 2)
# expect cooldown model to be removed from cooldown models
cooldown_deployments = router._get_cooldown_deployments()
print(
"cooldown_deployments after waiting cooldown time: ", cooldown_deployments
)
assert (
len(cooldown_deployments) == 0
), "Expected 0 models to be in cooldown models"
except Exception as e:
print(e)