litellm-mirror/tests/otel_tests/test_prometheus.py
2025-04-04 21:23:21 -07:00

582 lines
22 KiB
Python

"""
Unit tests for prometheus metrics
"""
import pytest
import aiohttp
import asyncio
import uuid
import os
import sys
from openai import AsyncOpenAI
import time
from typing import Dict, Any
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
END_USER_ID = "my-test-user-34"
async def make_bad_chat_completion_request(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return status, response_text
async def make_good_chat_completion_request(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-openai-endpoint",
"messages": [{"role": "user", "content": f"Hello {uuid.uuid4()}"}],
"tags": ["teamB"],
"user": END_USER_ID, # test if disable end user tracking for prometheus works
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return status, response_text
async def make_chat_completion_request_with_fallback(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
"fallbacks": ["fake-openai-endpoint"],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
# make a request with a failed fallback
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
"fallbacks": ["unknown-model"],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return
@pytest.mark.asyncio
async def test_proxy_failure_metrics():
"""
- Make 1 bad chat completion call to "fake-azure-endpoint"
- GET /metrics
- assert the failure metric for the requested model is incremented by 1
- Assert the Exception class and status code are correct
"""
async with aiohttp.ClientSession() as session:
# Make a bad chat completion call
status, response_text = await make_bad_chat_completion_request(
session, "sk-1234"
)
# Check if the request failed as expected
assert status == 429, f"Expected status 429, but got {status}"
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
# Check if the failure metric is present and correct
expected_metric = 'litellm_proxy_failed_requests_metric_total{api_key_alias="None",end_user="None",exception_class="Openai.RateLimitError",exception_status="429",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None",user="default_user_id"} 1.0'
assert (
expected_metric in metrics
), "Expected failure metric not found in /metrics."
expected_llm_deployment_failure = 'litellm_deployment_failure_responses_total{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",status_code="429",team="None",team_alias="None",user="default_user_id",user_email="None"} 1.0'
assert expected_llm_deployment_failure
assert (
'litellm_proxy_total_requests_metric_total{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",status_code="429",team="None",team_alias="None",user="default_user_id",user_email="None"} 1.0'
in metrics
)
assert (
'litellm_deployment_failure_responses_total{api_base="https://exampleopenaiendpoint-production.up.railway.app",api_key_alias="None",api_provider="openai",exception_class="Openai.RateLimitError",exception_status="429",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",litellm_model_name="429",model_id="7499d31f98cd518cf54486d5a00deda6894239ce16d13543398dc8abf870b15f",requested_model="fake-azure-endpoint",team="None",team_alias="None"}'
in metrics
)
@pytest.mark.asyncio
async def test_proxy_success_metrics():
"""
Make 1 good /chat/completions call to "openai/gpt-3.5-turbo"
GET /metrics
Assert the success metric is incremented by 1
"""
async with aiohttp.ClientSession() as session:
# Make a good chat completion call
status, response_text = await make_good_chat_completion_request(
session, "sk-1234"
)
# Check if the request succeeded as expected
assert status == 200, f"Expected status 200, but got {status}"
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
assert END_USER_ID not in metrics
# Check if the success metric is present and correct
assert (
'litellm_request_total_latency_metric_bucket{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",le="0.005",model="fake",requested_model="fake-openai-endpoint",team="None",team_alias="None",user="default_user_id"}'
in metrics
)
assert (
'litellm_llm_api_latency_metric_bucket{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",le="0.005",model="fake",requested_model="fake-openai-endpoint",team="None",team_alias="None",user="default_user_id"}'
in metrics
)
verify_latency_metrics(metrics)
def verify_latency_metrics(metrics: str):
"""
Assert that LATENCY_BUCKETS distribution is used for
- litellm_request_total_latency_metric_bucket
- litellm_llm_api_latency_metric_bucket
Very important to verify that the overhead latency metric is present
"""
from litellm.types.integrations.prometheus import LATENCY_BUCKETS
import re
import time
time.sleep(2)
metric_names = [
"litellm_request_total_latency_metric_bucket",
"litellm_llm_api_latency_metric_bucket",
"litellm_overhead_latency_metric_bucket",
]
for metric_name in metric_names:
# Extract all 'le' values for the current metric
pattern = rf'{metric_name}{{.*?le="(.*?)".*?}}'
le_values = re.findall(pattern, metrics)
# Convert to set for easier comparison
actual_buckets = set(le_values)
print("actual_buckets", actual_buckets)
expected_buckets = []
for bucket in LATENCY_BUCKETS:
expected_buckets.append(str(bucket))
# replace inf with +Inf
expected_buckets = [
bucket.replace("inf", "+Inf") for bucket in expected_buckets
]
print("expected_buckets", expected_buckets)
expected_buckets = set(expected_buckets)
# Verify all expected buckets are present
assert (
actual_buckets == expected_buckets
), f"Mismatch in {metric_name} buckets. Expected: {expected_buckets}, Got: {actual_buckets}"
@pytest.mark.asyncio
async def test_proxy_fallback_metrics():
"""
Make 1 request with a client side fallback - check metrics
"""
async with aiohttp.ClientSession() as session:
# Make a good chat completion call
await make_chat_completion_request_with_fallback(session, "sk-1234")
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
# Check if successful fallback metric is incremented
assert (
'litellm_deployment_successful_fallbacks_total{api_key_alias="None",exception_class="Openai.RateLimitError",exception_status="429",fallback_model="fake-openai-endpoint",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None"} 1.0'
in metrics
)
# Check if failed fallback metric is incremented
assert (
'litellm_deployment_failed_fallbacks_total{api_key_alias="None",exception_class="Openai.RateLimitError",exception_status="429",fallback_model="unknown-model",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None"} 1.0'
in metrics
)
async def create_test_team(
session: aiohttp.ClientSession, team_data: Dict[str, Any]
) -> str:
"""Create a new team and return the team_id"""
url = "http://0.0.0.0:4000/team/new"
headers = {
"Authorization": "Bearer sk-1234",
"Content-Type": "application/json",
}
async with session.post(url, headers=headers, json=team_data) as response:
assert (
response.status == 200
), f"Failed to create team. Status: {response.status}"
team_info = await response.json()
return team_info["team_id"]
async def create_test_user(
session: aiohttp.ClientSession, user_data: Dict[str, Any]
) -> str:
"""Create a new user and return the user_id"""
url = "http://0.0.0.0:4000/user/new"
headers = {
"Authorization": "Bearer sk-1234",
"Content-Type": "application/json",
}
async with session.post(url, headers=headers, json=user_data) as response:
assert (
response.status == 200
), f"Failed to create user. Status: {response.status}"
user_info = await response.json()
return user_info
async def get_prometheus_metrics(session: aiohttp.ClientSession) -> str:
"""Fetch current prometheus metrics"""
async with session.get("http://0.0.0.0:4000/metrics") as response:
assert response.status == 200
return await response.text()
def extract_budget_metrics(metrics_text: str, team_id: str) -> Dict[str, float]:
"""Extract budget-related metrics for a specific team"""
import re
metrics = {}
# Get remaining budget
remaining_pattern = f'litellm_remaining_team_budget_metric{{team="{team_id}",team_alias="[^"]*"}} ([0-9.]+)'
remaining_match = re.search(remaining_pattern, metrics_text)
metrics["remaining"] = float(remaining_match.group(1)) if remaining_match else None
# Get total budget
total_pattern = f'litellm_team_max_budget_metric{{team="{team_id}",team_alias="[^"]*"}} ([0-9.]+)'
total_match = re.search(total_pattern, metrics_text)
metrics["total"] = float(total_match.group(1)) if total_match else None
# Get remaining hours
hours_pattern = f'litellm_team_budget_remaining_hours_metric{{team="{team_id}",team_alias="[^"]*"}} ([0-9.]+)'
hours_match = re.search(hours_pattern, metrics_text)
metrics["remaining_hours"] = float(hours_match.group(1)) if hours_match else None
return metrics
async def create_test_key(session: aiohttp.ClientSession, team_id: str) -> str:
"""Generate a new key for the team and return it"""
url = "http://0.0.0.0:4000/key/generate"
headers = {
"Authorization": "Bearer sk-1234",
"Content-Type": "application/json",
}
data = {
"team_id": team_id,
}
async with session.post(url, headers=headers, json=data) as response:
assert (
response.status == 200
), f"Failed to generate key. Status: {response.status}"
key_info = await response.json()
return key_info["key"]
async def get_team_info(session: aiohttp.ClientSession, team_id: str) -> Dict[str, Any]:
"""Fetch team info and return the response"""
url = f"http://0.0.0.0:4000/team/info?team_id={team_id}"
headers = {
"Authorization": "Bearer sk-1234",
}
async with session.get(url, headers=headers) as response:
assert (
response.status == 200
), f"Failed to get team info. Status: {response.status}"
return await response.json()
@pytest.mark.asyncio
async def test_team_budget_metrics():
"""
Test team budget tracking metrics:
1. Create a team with max_budget
2. Generate a key for the team
3. Make chat completion requests using OpenAI SDK with team's key
4. Verify budget decreases over time
5. Verify request costs are being tracked correctly
6. Verify prometheus metrics match /team/info spend data
"""
async with aiohttp.ClientSession() as session:
# Setup test team
team_data = {
"team_alias": "budget_test_team",
"max_budget": 10,
"budget_duration": "7d",
}
team_id = await create_test_team(session, team_data)
print("team_id", team_id)
# Generate key for the team
team_key = await create_test_key(session, team_id)
# Initialize OpenAI client with team's key
client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key=team_key)
# Make initial request and check budget
await client.chat.completions.create(
model="fake-openai-endpoint",
messages=[{"role": "user", "content": f"Hello {uuid.uuid4()}"}],
)
await asyncio.sleep(11) # Wait for metrics to update
# Get metrics after request
metrics_after_first = await get_prometheus_metrics(session)
print("metrics_after_first", metrics_after_first)
first_budget = extract_budget_metrics(metrics_after_first, team_id)
print(f"Budget after 1 request: {first_budget}")
assert (
first_budget["remaining"] < 10.0
), "remaining budget should be less than 10.0 after first request"
assert first_budget["total"] == 10.0, "Total budget metric is incorrect"
print("first_budget['remaining_hours']", first_budget["remaining_hours"])
# Verify remaining hours matches 7 days (with small delta for processing time)
assert (
abs(first_budget["remaining_hours"] - (7 * 24)) <= 0.1
), "Budget remaining hours should be approximately 7 days (168 hours)"
# Get team info and verify spend matches prometheus metrics
team_info = await get_team_info(session, team_id)
print("team_info", team_info)
_team_info_data = team_info["team_info"]
# Calculate spend from prometheus (total - remaining)
team_info_spend = float(_team_info_data["spend"])
team_info_max_budget = float(_team_info_data["max_budget"])
team_info_remaining_budget = team_info_max_budget - team_info_spend
print("\n\n\n###### Final budget metrics ######\n\n\n")
print("team_info_remaining_budget", team_info_remaining_budget)
print("prometheus_remaining_budget", first_budget["remaining"])
print(
"diff between team_info_remaining_budget and prometheus_remaining_budget",
team_info_remaining_budget - first_budget["remaining"],
)
# Verify spends match within a small delta (floating point comparison)
assert (
abs(team_info_remaining_budget - first_budget["remaining"]) <= 0.00000
), f"Spend mismatch: Prometheus={team_info_remaining_budget}, Team Info={first_budget['remaining']}"
async def create_test_key_with_budget(
session: aiohttp.ClientSession, budget_data: Dict[str, Any]
) -> str:
"""Generate a new key with budget constraints and return it"""
url = "http://0.0.0.0:4000/key/generate"
headers = {
"Authorization": "Bearer sk-1234",
"Content-Type": "application/json",
}
print("budget_data", budget_data)
async with session.post(url, headers=headers, json=budget_data) as response:
assert (
response.status == 200
), f"Failed to generate key. Status: {response.status}"
key_info = await response.json()
return key_info["key"]
async def get_key_info(session: aiohttp.ClientSession, key: str) -> Dict[str, Any]:
"""Fetch key info and return the response"""
url = "http://0.0.0.0:4000/key/info"
headers = {
"Authorization": f"Bearer {key}",
}
async with session.get(url, headers=headers) as response:
assert (
response.status == 200
), f"Failed to get key info. Status: {response.status}"
return await response.json()
def extract_key_budget_metrics(metrics_text: str, key_id: str) -> Dict[str, float]:
"""Extract budget-related metrics for a specific key"""
import re
metrics = {}
# Get remaining budget
remaining_pattern = f'litellm_remaining_api_key_budget_metric{{api_key_alias="[^"]*",hashed_api_key="{key_id}"}} ([0-9.]+)'
remaining_match = re.search(remaining_pattern, metrics_text)
metrics["remaining"] = float(remaining_match.group(1)) if remaining_match else None
# Get total budget
total_pattern = f'litellm_api_key_max_budget_metric{{api_key_alias="[^"]*",hashed_api_key="{key_id}"}} ([0-9.]+)'
total_match = re.search(total_pattern, metrics_text)
metrics["total"] = float(total_match.group(1)) if total_match else None
# Get remaining hours
hours_pattern = f'litellm_api_key_budget_remaining_hours_metric{{api_key_alias="[^"]*",hashed_api_key="{key_id}"}} ([0-9.]+)'
hours_match = re.search(hours_pattern, metrics_text)
metrics["remaining_hours"] = float(hours_match.group(1)) if hours_match else None
return metrics
@pytest.mark.asyncio
async def test_key_budget_metrics():
"""
Test key budget tracking metrics:
1. Create a key with max_budget
2. Make chat completion requests using OpenAI SDK with the key
3. Verify budget decreases over time
4. Verify request costs are being tracked correctly
5. Verify prometheus metrics match /key/info spend data
"""
async with aiohttp.ClientSession() as session:
# Setup test key with unique alias
unique_alias = f"budget_test_key_{uuid.uuid4()}"
key_data = {
"key_alias": unique_alias,
"max_budget": 10,
"budget_duration": "7d",
}
key = await create_test_key_with_budget(session, key_data)
# Extract key_id from the key info
key_info = await get_key_info(session, key)
print("key_info", key_info)
key_id = key_info["key"]
print("key_id", key_id)
# Initialize OpenAI client with the key
client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key=key)
# Make initial request and check budget
await client.chat.completions.create(
model="fake-openai-endpoint",
messages=[{"role": "user", "content": f"Hello {uuid.uuid4()}"}],
)
await asyncio.sleep(11) # Wait for metrics to update
# Get metrics after request
metrics_after_first = await get_prometheus_metrics(session)
print("metrics_after_first request", metrics_after_first)
first_budget = extract_key_budget_metrics(metrics_after_first, key_id)
print(f"Budget after 1 request: {first_budget}")
assert (
first_budget["remaining"] < 10.0
), "remaining budget should be less than 10.0 after first request"
assert first_budget["total"] == 10.0, "Total budget metric is incorrect"
print("first_budget['remaining_hours']", first_budget["remaining_hours"])
# Verify remaining hours matches 7 days (with small delta for processing time)
assert (
abs(first_budget["remaining_hours"] - (7 * 24)) <= 0.1
), "Budget remaining hours should be approximately 7 days (168 hours)"
# Get key info and verify spend matches prometheus metrics
key_info = await get_key_info(session, key)
print("key_info", key_info)
_key_info_data = key_info["info"]
# Calculate spend from prometheus (total - remaining)
key_info_spend = float(_key_info_data["spend"])
key_info_max_budget = float(_key_info_data["max_budget"])
key_info_remaining_budget = key_info_max_budget - key_info_spend
print("\n\n\n###### Final budget metrics ######\n\n\n")
print("key_info_remaining_budget", key_info_remaining_budget)
print("prometheus_remaining_budget", first_budget["remaining"])
print(
"diff between key_info_remaining_budget and prometheus_remaining_budget",
key_info_remaining_budget - first_budget["remaining"],
)
# Verify spends match within a small delta (floating point comparison)
assert (
abs(key_info_remaining_budget - first_budget["remaining"]) <= 0.00000
), f"Spend mismatch: Prometheus={key_info_remaining_budget}, Key Info={first_budget['remaining']}"
@pytest.mark.asyncio
async def test_user_email_metrics():
"""
Test user email tracking metrics:
1. Create a user with user_email
2. Make chat completion requests using OpenAI SDK with the user's email
3. Verify user email is being tracked correctly in `litellm_user_email_metric`
"""
async with aiohttp.ClientSession() as session:
# Create a user with user_email
user_email = f"test-{uuid.uuid4()}@example.com"
user_data = {
"user_email": user_email,
}
user_info = await create_test_user(session, user_data)
key = user_info["key"]
# Initialize OpenAI client with the user's email
client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key=key)
# Make initial request and check budget
await client.chat.completions.create(
model="fake-openai-endpoint",
messages=[{"role": "user", "content": f"Hello {uuid.uuid4()}"}],
)
await asyncio.sleep(11) # Wait for metrics to update
# Get metrics after request
metrics_after_first = await get_prometheus_metrics(session)
print("metrics_after_first request", metrics_after_first)
assert (
user_email in metrics_after_first
), "user_email should be tracked correctly"