litellm-mirror/litellm/llms/anthropic/chat/transformation.py
Krish Dholakia 017c482d7b
fix(o_series_transformation.py): fix optional param check for o-serie… (#8787)
* fix(o_series_transformation.py): fix optional param check for o-series models

o3-mini and o-1 do not support parallel tool calling

* fix(utils.py): support 'drop_params' for 'thinking' param across models

allows switching to older claude versions (or non-anthropic models) and param to be safely dropped

* fix: fix passing thinking param in optional params

allows dropping thinking_param where not applicable

* test: update old model

* fix(utils.py): fix linting errors

* fix(main.py): add param to acompletion
2025-02-26 12:26:55 -08:00

813 lines
31 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import time
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union, cast
import httpx
import litellm
from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.litellm_core_utils.prompt_templates.factory import anthropic_messages_pt
from litellm.llms.base_llm.base_utils import type_to_response_format_param
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.types.llms.anthropic import (
AllAnthropicToolsValues,
AnthropicComputerTool,
AnthropicHostedTools,
AnthropicInputSchema,
AnthropicMessagesTool,
AnthropicMessagesToolChoice,
AnthropicSystemMessageContent,
)
from litellm.types.llms.openai import (
AllMessageValues,
ChatCompletionCachedContent,
ChatCompletionSystemMessage,
ChatCompletionToolCallChunk,
ChatCompletionToolCallFunctionChunk,
ChatCompletionToolParam,
)
from litellm.types.utils import Message as LitellmMessage
from litellm.types.utils import PromptTokensDetailsWrapper
from litellm.utils import ModelResponse, Usage, add_dummy_tool, has_tool_call_blocks
from ..common_utils import AnthropicError, process_anthropic_headers
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
LoggingClass = LiteLLMLoggingObj
else:
LoggingClass = Any
class AnthropicConfig(BaseConfig):
"""
Reference: https://docs.anthropic.com/claude/reference/messages_post
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
"""
max_tokens: Optional[int] = (
4096 # anthropic requires a default value (Opus, Sonnet, and Haiku have the same default)
)
stop_sequences: Optional[list] = None
temperature: Optional[int] = None
top_p: Optional[int] = None
top_k: Optional[int] = None
metadata: Optional[dict] = None
system: Optional[str] = None
def __init__(
self,
max_tokens: Optional[
int
] = 4096, # You can pass in a value yourself or use the default value 4096
stop_sequences: Optional[list] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
top_k: Optional[int] = None,
metadata: Optional[dict] = None,
system: Optional[str] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def get_supported_openai_params(self, model: str):
params = [
"stream",
"stop",
"temperature",
"top_p",
"max_tokens",
"max_completion_tokens",
"tools",
"tool_choice",
"extra_headers",
"parallel_tool_calls",
"response_format",
"user",
]
if "claude-3-7-sonnet" in model:
params.append("thinking")
return params
def get_json_schema_from_pydantic_object(
self, response_format: Union[Any, Dict, None]
) -> Optional[dict]:
return type_to_response_format_param(
response_format, ref_template="/$defs/{model}"
) # Relevant issue: https://github.com/BerriAI/litellm/issues/7755
def get_cache_control_headers(self) -> dict:
return {
"anthropic-version": "2023-06-01",
"anthropic-beta": "prompt-caching-2024-07-31",
}
def get_anthropic_headers(
self,
api_key: str,
anthropic_version: Optional[str] = None,
computer_tool_used: bool = False,
prompt_caching_set: bool = False,
pdf_used: bool = False,
is_vertex_request: bool = False,
) -> dict:
betas = []
if prompt_caching_set:
betas.append("prompt-caching-2024-07-31")
if computer_tool_used:
betas.append("computer-use-2024-10-22")
if pdf_used:
betas.append("pdfs-2024-09-25")
headers = {
"anthropic-version": anthropic_version or "2023-06-01",
"x-api-key": api_key,
"accept": "application/json",
"content-type": "application/json",
}
# Don't send any beta headers to Vertex, Vertex has failed requests when they are sent
if is_vertex_request is True:
pass
elif len(betas) > 0:
headers["anthropic-beta"] = ",".join(betas)
return headers
def _map_tool_choice(
self, tool_choice: Optional[str], parallel_tool_use: Optional[bool]
) -> Optional[AnthropicMessagesToolChoice]:
_tool_choice: Optional[AnthropicMessagesToolChoice] = None
if tool_choice == "auto":
_tool_choice = AnthropicMessagesToolChoice(
type="auto",
)
elif tool_choice == "required":
_tool_choice = AnthropicMessagesToolChoice(type="any")
elif isinstance(tool_choice, dict):
_tool_name = tool_choice.get("function", {}).get("name")
_tool_choice = AnthropicMessagesToolChoice(type="tool")
if _tool_name is not None:
_tool_choice["name"] = _tool_name
if parallel_tool_use is not None:
# Anthropic uses 'disable_parallel_tool_use' flag to determine if parallel tool use is allowed
# this is the inverse of the openai flag.
if _tool_choice is not None:
_tool_choice["disable_parallel_tool_use"] = not parallel_tool_use
else: # use anthropic defaults and make sure to send the disable_parallel_tool_use flag
_tool_choice = AnthropicMessagesToolChoice(
type="auto",
disable_parallel_tool_use=not parallel_tool_use,
)
return _tool_choice
def _map_tool_helper(
self, tool: ChatCompletionToolParam
) -> AllAnthropicToolsValues:
returned_tool: Optional[AllAnthropicToolsValues] = None
if tool["type"] == "function" or tool["type"] == "custom":
_input_schema: dict = tool["function"].get(
"parameters",
{
"type": "object",
"properties": {},
},
)
input_schema: AnthropicInputSchema = AnthropicInputSchema(**_input_schema)
_tool = AnthropicMessagesTool(
name=tool["function"]["name"],
input_schema=input_schema,
)
_description = tool["function"].get("description")
if _description is not None:
_tool["description"] = _description
returned_tool = _tool
elif tool["type"].startswith("computer_"):
## check if all required 'display_' params are given
if "parameters" not in tool["function"]:
raise ValueError("Missing required parameter: parameters")
_display_width_px: Optional[int] = tool["function"]["parameters"].get(
"display_width_px"
)
_display_height_px: Optional[int] = tool["function"]["parameters"].get(
"display_height_px"
)
if _display_width_px is None or _display_height_px is None:
raise ValueError(
"Missing required parameter: display_width_px or display_height_px"
)
_computer_tool = AnthropicComputerTool(
type=tool["type"],
name=tool["function"].get("name", "computer"),
display_width_px=_display_width_px,
display_height_px=_display_height_px,
)
_display_number = tool["function"]["parameters"].get("display_number")
if _display_number is not None:
_computer_tool["display_number"] = _display_number
returned_tool = _computer_tool
elif tool["type"].startswith("bash_") or tool["type"].startswith(
"text_editor_"
):
function_name = tool["function"].get("name")
if function_name is None:
raise ValueError("Missing required parameter: name")
returned_tool = AnthropicHostedTools(
type=tool["type"],
name=function_name,
)
if returned_tool is None:
raise ValueError(f"Unsupported tool type: {tool['type']}")
## check if cache_control is set in the tool
_cache_control = tool.get("cache_control", None)
_cache_control_function = tool.get("function", {}).get("cache_control", None)
if _cache_control is not None:
returned_tool["cache_control"] = _cache_control
elif _cache_control_function is not None and isinstance(
_cache_control_function, dict
):
returned_tool["cache_control"] = ChatCompletionCachedContent(
**_cache_control_function # type: ignore
)
return returned_tool
def _map_tools(self, tools: List) -> List[AllAnthropicToolsValues]:
anthropic_tools = []
for tool in tools:
if "input_schema" in tool: # assume in anthropic format
anthropic_tools.append(tool)
else: # assume openai tool call
new_tool = self._map_tool_helper(tool)
anthropic_tools.append(new_tool)
return anthropic_tools
def _map_stop_sequences(
self, stop: Optional[Union[str, List[str]]]
) -> Optional[List[str]]:
new_stop: Optional[List[str]] = None
if isinstance(stop, str):
if (
stop.isspace() and litellm.drop_params is True
): # anthropic doesn't allow whitespace characters as stop-sequences
return new_stop
new_stop = [stop]
elif isinstance(stop, list):
new_v = []
for v in stop:
if (
v.isspace() and litellm.drop_params is True
): # anthropic doesn't allow whitespace characters as stop-sequences
continue
new_v.append(v)
if len(new_v) > 0:
new_stop = new_v
return new_stop
def _add_tools_to_optional_params(
self, optional_params: dict, tools: List[AllAnthropicToolsValues]
) -> dict:
if "tools" not in optional_params:
optional_params["tools"] = tools
else:
optional_params["tools"] = [
*optional_params["tools"],
*tools,
]
return optional_params
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "max_completion_tokens":
optional_params["max_tokens"] = value
if param == "tools":
# check if optional params already has tools
tool_value = self._map_tools(value)
optional_params = self._add_tools_to_optional_params(
optional_params=optional_params, tools=tool_value
)
if param == "tool_choice" or param == "parallel_tool_calls":
_tool_choice: Optional[AnthropicMessagesToolChoice] = (
self._map_tool_choice(
tool_choice=non_default_params.get("tool_choice"),
parallel_tool_use=non_default_params.get("parallel_tool_calls"),
)
)
if _tool_choice is not None:
optional_params["tool_choice"] = _tool_choice
if param == "stream" and value is True:
optional_params["stream"] = value
if param == "stop" and (isinstance(value, str) or isinstance(value, list)):
_value = self._map_stop_sequences(value)
if _value is not None:
optional_params["stop_sequences"] = _value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "response_format" and isinstance(value, dict):
json_schema: Optional[dict] = None
if "response_schema" in value:
json_schema = value["response_schema"]
elif "json_schema" in value:
json_schema = value["json_schema"]["schema"]
"""
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
- You usually want to provide a single tool
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the models perspective.
"""
_tool_choice = {"name": RESPONSE_FORMAT_TOOL_NAME, "type": "tool"}
_tool = self._create_json_tool_call_for_response_format(
json_schema=json_schema,
)
optional_params = self._add_tools_to_optional_params(
optional_params=optional_params, tools=[_tool]
)
optional_params["tool_choice"] = _tool_choice
optional_params["json_mode"] = True
if param == "user":
optional_params["metadata"] = {"user_id": value}
if param == "thinking":
optional_params["thinking"] = value
return optional_params
def _create_json_tool_call_for_response_format(
self,
json_schema: Optional[dict] = None,
) -> AnthropicMessagesTool:
"""
Handles creating a tool call for getting responses in JSON format.
Args:
json_schema (Optional[dict]): The JSON schema the response should be in
Returns:
AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
"""
_input_schema: AnthropicInputSchema = AnthropicInputSchema(
type="object",
)
if json_schema is None:
# Anthropic raises a 400 BadRequest error if properties is passed as None
# see usage with additionalProperties (Example 5) https://github.com/anthropics/anthropic-cookbook/blob/main/tool_use/extracting_structured_json.ipynb
_input_schema["additionalProperties"] = True
_input_schema["properties"] = {}
else:
_input_schema["properties"] = {"values": json_schema}
_tool = AnthropicMessagesTool(
name=RESPONSE_FORMAT_TOOL_NAME, input_schema=_input_schema
)
return _tool
def is_cache_control_set(self, messages: List[AllMessageValues]) -> bool:
"""
Return if {"cache_control": ..} in message content block
Used to check if anthropic prompt caching headers need to be set.
"""
for message in messages:
if message.get("cache_control", None) is not None:
return True
_message_content = message.get("content")
if _message_content is not None and isinstance(_message_content, list):
for content in _message_content:
if "cache_control" in content:
return True
return False
def is_computer_tool_used(
self, tools: Optional[List[AllAnthropicToolsValues]]
) -> bool:
if tools is None:
return False
for tool in tools:
if "type" in tool and tool["type"].startswith("computer_"):
return True
return False
def is_pdf_used(self, messages: List[AllMessageValues]) -> bool:
"""
Set to true if media passed into messages.
"""
for message in messages:
if (
"content" in message
and message["content"] is not None
and isinstance(message["content"], list)
):
for content in message["content"]:
if "type" in content and content["type"] != "text":
return True
return False
def translate_system_message(
self, messages: List[AllMessageValues]
) -> List[AnthropicSystemMessageContent]:
"""
Translate system message to anthropic format.
Removes system message from the original list and returns a new list of anthropic system message content.
"""
system_prompt_indices = []
anthropic_system_message_list: List[AnthropicSystemMessageContent] = []
for idx, message in enumerate(messages):
if message["role"] == "system":
valid_content: bool = False
system_message_block = ChatCompletionSystemMessage(**message)
if isinstance(system_message_block["content"], str):
anthropic_system_message_content = AnthropicSystemMessageContent(
type="text",
text=system_message_block["content"],
)
if "cache_control" in system_message_block:
anthropic_system_message_content["cache_control"] = (
system_message_block["cache_control"]
)
anthropic_system_message_list.append(
anthropic_system_message_content
)
valid_content = True
elif isinstance(message["content"], list):
for _content in message["content"]:
anthropic_system_message_content = (
AnthropicSystemMessageContent(
type=_content.get("type"),
text=_content.get("text"),
)
)
if "cache_control" in _content:
anthropic_system_message_content["cache_control"] = (
_content["cache_control"]
)
anthropic_system_message_list.append(
anthropic_system_message_content
)
valid_content = True
if valid_content:
system_prompt_indices.append(idx)
if len(system_prompt_indices) > 0:
for idx in reversed(system_prompt_indices):
messages.pop(idx)
return anthropic_system_message_list
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
"""
Translate messages to anthropic format.
"""
## VALIDATE REQUEST
"""
Anthropic doesn't support tool calling without `tools=` param specified.
"""
if (
"tools" not in optional_params
and messages is not None
and has_tool_call_blocks(messages)
):
if litellm.modify_params:
optional_params["tools"] = self._map_tools(
add_dummy_tool(custom_llm_provider="anthropic")
)
else:
raise litellm.UnsupportedParamsError(
message="Anthropic doesn't support tool calling without `tools=` param specified. Pass `tools=` param OR set `litellm.modify_params = True` // `litellm_settings::modify_params: True` to add dummy tool to the request.",
model="",
llm_provider="anthropic",
)
# Separate system prompt from rest of message
anthropic_system_message_list = self.translate_system_message(messages=messages)
# Handling anthropic API Prompt Caching
if len(anthropic_system_message_list) > 0:
optional_params["system"] = anthropic_system_message_list
# Format rest of message according to anthropic guidelines
try:
anthropic_messages = anthropic_messages_pt(
model=model,
messages=messages,
llm_provider="anthropic",
)
except Exception as e:
raise AnthropicError(
status_code=400,
message="{}\nReceived Messages={}".format(str(e), messages),
) # don't use verbose_logger.exception, if exception is raised
## Load Config
config = litellm.AnthropicConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
## Handle user_id in metadata
_litellm_metadata = litellm_params.get("metadata", None)
if (
_litellm_metadata
and isinstance(_litellm_metadata, dict)
and "user_id" in _litellm_metadata
):
optional_params["metadata"] = {"user_id": _litellm_metadata["user_id"]}
data = {
"model": model,
"messages": anthropic_messages,
**optional_params,
}
return data
def _transform_response_for_json_mode(
self,
json_mode: Optional[bool],
tool_calls: List[ChatCompletionToolCallChunk],
) -> Optional[LitellmMessage]:
_message: Optional[LitellmMessage] = None
if json_mode is True and len(tool_calls) == 1:
# check if tool name is the default tool name
json_mode_content_str: Optional[str] = None
if (
"name" in tool_calls[0]["function"]
and tool_calls[0]["function"]["name"] == RESPONSE_FORMAT_TOOL_NAME
):
json_mode_content_str = tool_calls[0]["function"].get("arguments")
if json_mode_content_str is not None:
_message = AnthropicConfig._convert_tool_response_to_message(
tool_calls=tool_calls,
)
return _message
def extract_response_content(self, completion_response: dict) -> Tuple[
str,
Optional[List[Any]],
Optional[List[Dict[str, Any]]],
List[ChatCompletionToolCallChunk],
]:
text_content = ""
citations: Optional[List[Any]] = None
thinking_blocks: Optional[List[Dict[str, Any]]] = None
tool_calls: List[ChatCompletionToolCallChunk] = []
for idx, content in enumerate(completion_response["content"]):
if content["type"] == "text":
text_content += content["text"]
## TOOL CALLING
elif content["type"] == "tool_use":
tool_calls.append(
ChatCompletionToolCallChunk(
id=content["id"],
type="function",
function=ChatCompletionToolCallFunctionChunk(
name=content["name"],
arguments=json.dumps(content["input"]),
),
index=idx,
)
)
## CITATIONS
if content.get("citations", None) is not None:
if citations is None:
citations = []
citations.append(content["citations"])
if content.get("thinking", None) is not None:
if thinking_blocks is None:
thinking_blocks = []
thinking_blocks.append(content)
return text_content, citations, thinking_blocks, tool_calls
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LoggingClass,
request_data: Dict,
messages: List[AllMessageValues],
optional_params: Dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
_hidden_params: Dict = {}
_hidden_params["additional_headers"] = process_anthropic_headers(
dict(raw_response.headers)
)
## LOGGING
logging_obj.post_call(
input=messages,
api_key=api_key,
original_response=raw_response.text,
additional_args={"complete_input_dict": request_data},
)
## RESPONSE OBJECT
try:
completion_response = raw_response.json()
except Exception as e:
response_headers = getattr(raw_response, "headers", None)
raise AnthropicError(
message="Unable to get json response - {}, Original Response: {}".format(
str(e), raw_response.text
),
status_code=raw_response.status_code,
headers=response_headers,
)
if "error" in completion_response:
response_headers = getattr(raw_response, "headers", None)
raise AnthropicError(
message=str(completion_response["error"]),
status_code=raw_response.status_code,
headers=response_headers,
)
else:
text_content = ""
citations: Optional[List[Any]] = None
thinking_blocks: Optional[List[Dict[str, Any]]] = None
tool_calls: List[ChatCompletionToolCallChunk] = []
text_content, citations, thinking_blocks, tool_calls = (
self.extract_response_content(completion_response=completion_response)
)
_message = litellm.Message(
tool_calls=tool_calls,
content=text_content or None,
provider_specific_fields={
"citations": citations,
"thinking_blocks": thinking_blocks,
},
)
## HANDLE JSON MODE - anthropic returns single function call
json_mode_message = self._transform_response_for_json_mode(
json_mode=json_mode,
tool_calls=tool_calls,
)
if json_mode_message is not None:
completion_response["stop_reason"] = "stop"
_message = json_mode_message
model_response.choices[0].message = _message # type: ignore
model_response._hidden_params["original_response"] = completion_response[
"content"
] # allow user to access raw anthropic tool calling response
model_response.choices[0].finish_reason = map_finish_reason(
completion_response["stop_reason"]
)
## CALCULATING USAGE
prompt_tokens = completion_response["usage"]["input_tokens"]
completion_tokens = completion_response["usage"]["output_tokens"]
_usage = completion_response["usage"]
cache_creation_input_tokens: int = 0
cache_read_input_tokens: int = 0
model_response.created = int(time.time())
model_response.model = completion_response["model"]
if "cache_creation_input_tokens" in _usage:
cache_creation_input_tokens = _usage["cache_creation_input_tokens"]
prompt_tokens += cache_creation_input_tokens
if "cache_read_input_tokens" in _usage:
cache_read_input_tokens = _usage["cache_read_input_tokens"]
prompt_tokens += cache_read_input_tokens
prompt_tokens_details = PromptTokensDetailsWrapper(
cached_tokens=cache_read_input_tokens
)
total_tokens = prompt_tokens + completion_tokens
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
prompt_tokens_details=prompt_tokens_details,
cache_creation_input_tokens=cache_creation_input_tokens,
cache_read_input_tokens=cache_read_input_tokens,
)
setattr(model_response, "usage", usage) # type: ignore
model_response._hidden_params = _hidden_params
return model_response
@staticmethod
def _convert_tool_response_to_message(
tool_calls: List[ChatCompletionToolCallChunk],
) -> Optional[LitellmMessage]:
"""
In JSON mode, Anthropic API returns JSON schema as a tool call, we need to convert it to a message to follow the OpenAI format
"""
## HANDLE JSON MODE - anthropic returns single function call
json_mode_content_str: Optional[str] = tool_calls[0]["function"].get(
"arguments"
)
try:
if json_mode_content_str is not None:
args = json.loads(json_mode_content_str)
if (
isinstance(args, dict)
and (values := args.get("values")) is not None
):
_message = litellm.Message(content=json.dumps(values))
return _message
else:
# a lot of the times the `values` key is not present in the tool response
# relevant issue: https://github.com/BerriAI/litellm/issues/6741
_message = litellm.Message(content=json.dumps(args))
return _message
except json.JSONDecodeError:
# json decode error does occur, return the original tool response str
return litellm.Message(content=json_mode_content_str)
return None
def get_error_class(
self, error_message: str, status_code: int, headers: Union[Dict, httpx.Headers]
) -> BaseLLMException:
return AnthropicError(
status_code=status_code,
message=error_message,
headers=cast(httpx.Headers, headers),
)
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> Dict:
if api_key is None:
raise litellm.AuthenticationError(
message="Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params. Please set `ANTHROPIC_API_KEY` in your environment vars",
llm_provider="anthropic",
model=model,
)
tools = optional_params.get("tools")
prompt_caching_set = self.is_cache_control_set(messages=messages)
computer_tool_used = self.is_computer_tool_used(tools=tools)
pdf_used = self.is_pdf_used(messages=messages)
anthropic_headers = self.get_anthropic_headers(
computer_tool_used=computer_tool_used,
prompt_caching_set=prompt_caching_set,
pdf_used=pdf_used,
api_key=api_key,
is_vertex_request=optional_params.get("is_vertex_request", False),
)
headers = {**headers, **anthropic_headers}
return headers