mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
189 lines
6.8 KiB
Python
189 lines
6.8 KiB
Python
import os, types
|
|
import json
|
|
from enum import Enum
|
|
import requests
|
|
import time
|
|
from typing import Callable, Optional
|
|
import litellm
|
|
from litellm.utils import ModelResponse, Usage
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
|
|
|
class PetalsError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
class PetalsConfig():
|
|
"""
|
|
Reference: https://github.com/petals-infra/chat.petals.dev#post-apiv1generate
|
|
The `PetalsConfig` class encapsulates the configuration for the Petals API. The properties of this class are described below:
|
|
|
|
- `max_length` (integer): This represents the maximum length of the generated text (including the prefix) in tokens.
|
|
|
|
- `max_new_tokens` (integer): This represents the maximum number of newly generated tokens (excluding the prefix).
|
|
|
|
The generation parameters are compatible with `.generate()` from Hugging Face's Transformers library:
|
|
|
|
- `do_sample` (boolean, optional): If set to 0 (default), the API runs greedy generation. If set to 1, the API performs sampling using the parameters below:
|
|
|
|
- `temperature` (float, optional): This value sets the temperature for sampling.
|
|
|
|
- `top_k` (integer, optional): This value sets the limit for top-k sampling.
|
|
|
|
- `top_p` (float, optional): This value sets the limit for top-p (nucleus) sampling.
|
|
|
|
- `repetition_penalty` (float, optional): This helps apply the repetition penalty during text generation, as discussed in this paper.
|
|
"""
|
|
max_length: Optional[int]=None
|
|
max_new_tokens: Optional[int]=litellm.max_tokens # petals requires max tokens to be set
|
|
do_sample: Optional[bool]=None
|
|
temperature: Optional[float]=None
|
|
top_k: Optional[int]=None
|
|
top_p: Optional[float]=None
|
|
repetition_penalty: Optional[float]=None
|
|
|
|
def __init__(self,
|
|
max_length: Optional[int]=None,
|
|
max_new_tokens: Optional[int]=litellm.max_tokens, # petals requires max tokens to be set
|
|
do_sample: Optional[bool]=None,
|
|
temperature: Optional[float]=None,
|
|
top_k: Optional[int]=None,
|
|
top_p: Optional[float]=None,
|
|
repetition_penalty: Optional[float]=None) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
api_base: Optional[str],
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
optional_params=None,
|
|
stream=False,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
## Load Config
|
|
config = litellm.PetalsConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in optional_params: # completion(top_k=3) > petals_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
if model in litellm.custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = litellm.custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details["roles"],
|
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
messages=messages
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
|
|
if api_base:
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key="",
|
|
additional_args={"complete_input_dict": optional_params, "api_base": api_base},
|
|
)
|
|
data = {
|
|
"model": model,
|
|
"inputs": prompt,
|
|
**optional_params
|
|
}
|
|
|
|
## COMPLETION CALL
|
|
response = requests.post(api_base, data=data)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key="",
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": optional_params},
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
try:
|
|
output_text = response.json()["outputs"]
|
|
except Exception as e:
|
|
PetalsError(status_code=response.status_code, message=str(e))
|
|
|
|
else:
|
|
try:
|
|
import torch
|
|
from transformers import AutoTokenizer
|
|
from petals import AutoDistributedModelForCausalLM # type: ignore
|
|
except:
|
|
raise Exception(
|
|
"Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals"
|
|
)
|
|
|
|
model = model
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False, add_bos_token=False)
|
|
model_obj = AutoDistributedModelForCausalLM.from_pretrained(model)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key="",
|
|
additional_args={"complete_input_dict": optional_params},
|
|
)
|
|
|
|
## COMPLETION CALL
|
|
inputs = tokenizer(prompt, return_tensors="pt")["input_ids"]
|
|
|
|
# optional params: max_new_tokens=1,temperature=0.9, top_p=0.6
|
|
outputs = model_obj.generate(inputs, **optional_params)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key="",
|
|
original_response=outputs,
|
|
additional_args={"complete_input_dict": optional_params},
|
|
)
|
|
## RESPONSE OBJECT
|
|
output_text = tokenizer.decode(outputs[0])
|
|
|
|
if len(output_text) > 0:
|
|
model_response["choices"][0]["message"]["content"] = output_text
|
|
|
|
prompt_tokens = len(
|
|
encoding.encode(prompt)
|
|
)
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content"))
|
|
)
|
|
|
|
model_response["created"] = int(time.time())
|
|
model_response["model"] = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens
|
|
)
|
|
model_response.usage = usage
|
|
return model_response
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|