mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* Azure Service Principal with Secret authentication workflow. (#5131) * Implement Azure Service Principal with Secret authentication workflow. * Use `ClientSecretCredential` instead of `DefaultAzureCredential`. * Move imports into the function. * Add type hint for `azure_ad_token_provider`. * Add unit test for router initialization and sample completion using Azure Service Principal with Secret authentication workflow. * Add unit test for router initialization with neither API key nor using Azure Service Principal with Secret authentication workflow. * fix(client_initializtion_utils.py): fix typing + overrides * test: fix linting errors * fix(client_initialization_utils.py): fix client init azure ad token logic * fix(router_client_initialization.py): add flag check for reading azure ad token from environment * test(test_streaming.py): skip end of life bedrock model * test(test_router_client_init.py): add correct flag to test --------- Co-authored-by: kzych-inpost <142029278+kzych-inpost@users.noreply.github.com>
566 lines
24 KiB
Python
566 lines
24 KiB
Python
import asyncio
|
|
import os
|
|
import traceback
|
|
from typing import TYPE_CHECKING, Any, Callable, Optional
|
|
|
|
import httpx
|
|
import openai
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_router_logger
|
|
from litellm.llms.azure import get_azure_ad_token_from_oidc
|
|
from litellm.proxy.secret_managers.get_azure_ad_token_provider import (
|
|
get_azure_ad_token_provider,
|
|
)
|
|
from litellm.utils import calculate_max_parallel_requests
|
|
|
|
if TYPE_CHECKING:
|
|
from litellm.router import Router as _Router
|
|
|
|
LitellmRouter = _Router
|
|
else:
|
|
LitellmRouter = Any
|
|
|
|
|
|
def should_initialize_sync_client(
|
|
litellm_router_instance: LitellmRouter,
|
|
) -> bool:
|
|
"""
|
|
Returns if Sync OpenAI, Azure Clients should be initialized.
|
|
|
|
Do not init sync clients when router.router_general_settings.async_only_mode is True
|
|
|
|
"""
|
|
if litellm_router_instance is None:
|
|
return False
|
|
|
|
if litellm_router_instance.router_general_settings is not None:
|
|
if (
|
|
hasattr(litellm_router_instance, "router_general_settings")
|
|
and hasattr(
|
|
litellm_router_instance.router_general_settings, "async_only_mode"
|
|
)
|
|
and litellm_router_instance.router_general_settings.async_only_mode is True
|
|
):
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def set_client(litellm_router_instance: LitellmRouter, model: dict):
|
|
"""
|
|
- Initializes Azure/OpenAI clients. Stores them in cache, b/c of this - https://github.com/BerriAI/litellm/issues/1278
|
|
- Initializes Semaphore for client w/ rpm. Stores them in cache. b/c of this - https://github.com/BerriAI/litellm/issues/2994
|
|
"""
|
|
client_ttl = litellm_router_instance.client_ttl
|
|
litellm_params = model.get("litellm_params", {})
|
|
model_name = litellm_params.get("model")
|
|
model_id = model["model_info"]["id"]
|
|
# ### IF RPM SET - initialize a semaphore ###
|
|
rpm = litellm_params.get("rpm", None)
|
|
tpm = litellm_params.get("tpm", None)
|
|
max_parallel_requests = litellm_params.get("max_parallel_requests", None)
|
|
calculated_max_parallel_requests = calculate_max_parallel_requests(
|
|
rpm=rpm,
|
|
max_parallel_requests=max_parallel_requests,
|
|
tpm=tpm,
|
|
default_max_parallel_requests=litellm_router_instance.default_max_parallel_requests,
|
|
)
|
|
if calculated_max_parallel_requests:
|
|
semaphore = asyncio.Semaphore(calculated_max_parallel_requests)
|
|
cache_key = f"{model_id}_max_parallel_requests_client"
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=semaphore,
|
|
local_only=True,
|
|
)
|
|
|
|
#### for OpenAI / Azure we need to initalize the Client for High Traffic ########
|
|
custom_llm_provider = litellm_params.get("custom_llm_provider")
|
|
custom_llm_provider = custom_llm_provider or model_name.split("/", 1)[0] or ""
|
|
default_api_base = None
|
|
default_api_key = None
|
|
if custom_llm_provider in litellm.openai_compatible_providers:
|
|
_, custom_llm_provider, api_key, api_base = litellm.get_llm_provider(
|
|
model=model_name
|
|
)
|
|
default_api_base = api_base
|
|
default_api_key = api_key
|
|
|
|
if (
|
|
model_name in litellm.open_ai_chat_completion_models
|
|
or custom_llm_provider in litellm.openai_compatible_providers
|
|
or custom_llm_provider == "azure"
|
|
or custom_llm_provider == "azure_text"
|
|
or custom_llm_provider == "custom_openai"
|
|
or custom_llm_provider == "openai"
|
|
or custom_llm_provider == "text-completion-openai"
|
|
or "ft:gpt-3.5-turbo" in model_name
|
|
or model_name in litellm.open_ai_embedding_models
|
|
):
|
|
is_azure_ai_studio_model: bool = False
|
|
if custom_llm_provider == "azure":
|
|
if litellm.utils._is_non_openai_azure_model(model_name):
|
|
is_azure_ai_studio_model = True
|
|
custom_llm_provider = "openai"
|
|
# remove azure prefx from model_name
|
|
model_name = model_name.replace("azure/", "")
|
|
# glorified / complicated reading of configs
|
|
# user can pass vars directly or they can pas os.environ/AZURE_API_KEY, in which case we will read the env
|
|
# we do this here because we init clients for Azure, OpenAI and we need to set the right key
|
|
api_key = litellm_params.get("api_key") or default_api_key
|
|
if api_key and isinstance(api_key, str) and api_key.startswith("os.environ/"):
|
|
api_key_env_name = api_key.replace("os.environ/", "")
|
|
api_key = litellm.get_secret(api_key_env_name)
|
|
litellm_params["api_key"] = api_key
|
|
|
|
api_base = litellm_params.get("api_base")
|
|
base_url = litellm_params.get("base_url")
|
|
api_base = (
|
|
api_base or base_url or default_api_base
|
|
) # allow users to pass in `api_base` or `base_url` for azure
|
|
if api_base and api_base.startswith("os.environ/"):
|
|
api_base_env_name = api_base.replace("os.environ/", "")
|
|
api_base = litellm.get_secret(api_base_env_name)
|
|
litellm_params["api_base"] = api_base
|
|
|
|
## AZURE AI STUDIO MISTRAL CHECK ##
|
|
"""
|
|
Make sure api base ends in /v1/
|
|
|
|
if not, add it - https://github.com/BerriAI/litellm/issues/2279
|
|
"""
|
|
if (
|
|
is_azure_ai_studio_model is True
|
|
and api_base is not None
|
|
and isinstance(api_base, str)
|
|
and not api_base.endswith("/v1/")
|
|
):
|
|
# check if it ends with a trailing slash
|
|
if api_base.endswith("/"):
|
|
api_base += "v1/"
|
|
elif api_base.endswith("/v1"):
|
|
api_base += "/"
|
|
else:
|
|
api_base += "/v1/"
|
|
|
|
api_version = litellm_params.get("api_version")
|
|
if api_version and api_version.startswith("os.environ/"):
|
|
api_version_env_name = api_version.replace("os.environ/", "")
|
|
api_version = litellm.get_secret(api_version_env_name)
|
|
litellm_params["api_version"] = api_version
|
|
|
|
timeout = litellm_params.pop("timeout", None) or litellm.request_timeout
|
|
if isinstance(timeout, str) and timeout.startswith("os.environ/"):
|
|
timeout_env_name = timeout.replace("os.environ/", "")
|
|
timeout = litellm.get_secret(timeout_env_name)
|
|
litellm_params["timeout"] = timeout
|
|
|
|
stream_timeout = litellm_params.pop(
|
|
"stream_timeout", timeout
|
|
) # if no stream_timeout is set, default to timeout
|
|
if isinstance(stream_timeout, str) and stream_timeout.startswith("os.environ/"):
|
|
stream_timeout_env_name = stream_timeout.replace("os.environ/", "")
|
|
stream_timeout = litellm.get_secret(stream_timeout_env_name)
|
|
litellm_params["stream_timeout"] = stream_timeout
|
|
|
|
max_retries = litellm_params.pop("max_retries", 0) # router handles retry logic
|
|
if isinstance(max_retries, str) and max_retries.startswith("os.environ/"):
|
|
max_retries_env_name = max_retries.replace("os.environ/", "")
|
|
max_retries = litellm.get_secret(max_retries_env_name)
|
|
litellm_params["max_retries"] = max_retries
|
|
|
|
organization = litellm_params.get("organization", None)
|
|
if isinstance(organization, str) and organization.startswith("os.environ/"):
|
|
organization_env_name = organization.replace("os.environ/", "")
|
|
organization = litellm.get_secret(organization_env_name)
|
|
litellm_params["organization"] = organization
|
|
azure_ad_token_provider: Optional[Callable[[], str]] = None
|
|
if litellm_params.get("tenant_id"):
|
|
verbose_router_logger.debug("Using Azure AD Token Provider for Azure Auth")
|
|
azure_ad_token_provider = get_azure_ad_token_from_entrata_id(
|
|
tenant_id=litellm_params.get("tenant_id"),
|
|
client_id=litellm_params.get("client_id"),
|
|
client_secret=litellm_params.get("client_secret"),
|
|
)
|
|
|
|
if custom_llm_provider == "azure" or custom_llm_provider == "azure_text":
|
|
if api_base is None or not isinstance(api_base, str):
|
|
filtered_litellm_params = {
|
|
k: v for k, v in model["litellm_params"].items() if k != "api_key"
|
|
}
|
|
_filtered_model = {
|
|
"model_name": model["model_name"],
|
|
"litellm_params": filtered_litellm_params,
|
|
}
|
|
raise ValueError(
|
|
f"api_base is required for Azure OpenAI. Set it on your config. Model - {_filtered_model}"
|
|
)
|
|
azure_ad_token = litellm_params.get("azure_ad_token")
|
|
if azure_ad_token is not None:
|
|
if azure_ad_token.startswith("oidc/"):
|
|
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
|
elif (
|
|
azure_ad_token_provider is None
|
|
and litellm.enable_azure_ad_token_refresh is True
|
|
):
|
|
try:
|
|
azure_ad_token_provider = get_azure_ad_token_provider()
|
|
except ValueError:
|
|
verbose_router_logger.debug(
|
|
"Azure AD Token Provider could not be used."
|
|
)
|
|
if api_version is None:
|
|
api_version = os.getenv(
|
|
"AZURE_API_VERSION", litellm.AZURE_DEFAULT_API_VERSION
|
|
)
|
|
|
|
if "gateway.ai.cloudflare.com" in api_base:
|
|
if not api_base.endswith("/"):
|
|
api_base += "/"
|
|
azure_model = model_name.replace("azure/", "")
|
|
api_base += f"{azure_model}"
|
|
cache_key = f"{model_id}_async_client"
|
|
_client = openai.AsyncAzureOpenAI(
|
|
api_key=api_key,
|
|
azure_ad_token=azure_ad_token,
|
|
azure_ad_token_provider=azure_ad_token_provider,
|
|
base_url=api_base,
|
|
api_version=api_version,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
http_client=httpx.AsyncClient(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
), # type: ignore
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
|
|
if should_initialize_sync_client(
|
|
litellm_router_instance=litellm_router_instance
|
|
):
|
|
cache_key = f"{model_id}_client"
|
|
_client = openai.AzureOpenAI( # type: ignore
|
|
api_key=api_key,
|
|
azure_ad_token=azure_ad_token,
|
|
azure_ad_token_provider=azure_ad_token_provider,
|
|
base_url=api_base,
|
|
api_version=api_version,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
http_client=httpx.Client(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
), # type: ignore
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
# streaming clients can have diff timeouts
|
|
cache_key = f"{model_id}_stream_async_client"
|
|
_client = openai.AsyncAzureOpenAI( # type: ignore
|
|
api_key=api_key,
|
|
azure_ad_token=azure_ad_token,
|
|
azure_ad_token_provider=azure_ad_token_provider,
|
|
base_url=api_base,
|
|
api_version=api_version,
|
|
timeout=stream_timeout,
|
|
max_retries=max_retries,
|
|
http_client=httpx.AsyncClient(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
), # type: ignore
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
|
|
if should_initialize_sync_client(
|
|
litellm_router_instance=litellm_router_instance
|
|
):
|
|
cache_key = f"{model_id}_stream_client"
|
|
_client = openai.AzureOpenAI( # type: ignore
|
|
api_key=api_key,
|
|
azure_ad_token=azure_ad_token,
|
|
azure_ad_token_provider=azure_ad_token_provider,
|
|
base_url=api_base,
|
|
api_version=api_version,
|
|
timeout=stream_timeout,
|
|
max_retries=max_retries,
|
|
http_client=httpx.Client(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
), # type: ignore
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
else:
|
|
_api_key = api_key
|
|
if _api_key is not None and isinstance(_api_key, str):
|
|
# only show first 5 chars of api_key
|
|
_api_key = _api_key[:8] + "*" * 15
|
|
verbose_router_logger.debug(
|
|
f"Initializing Azure OpenAI Client for {model_name}, Api Base: {str(api_base)}, Api Key:{_api_key}"
|
|
)
|
|
azure_client_params = {
|
|
"api_key": api_key,
|
|
"azure_endpoint": api_base,
|
|
"api_version": api_version,
|
|
"azure_ad_token": azure_ad_token,
|
|
"azure_ad_token_provider": azure_ad_token_provider,
|
|
}
|
|
|
|
if azure_ad_token_provider is not None:
|
|
azure_client_params["azure_ad_token_provider"] = (
|
|
azure_ad_token_provider
|
|
)
|
|
from litellm.llms.azure import select_azure_base_url_or_endpoint
|
|
|
|
# this decides if we should set azure_endpoint or base_url on Azure OpenAI Client
|
|
# required to support GPT-4 vision enhancements, since base_url needs to be set on Azure OpenAI Client
|
|
azure_client_params = select_azure_base_url_or_endpoint(
|
|
azure_client_params
|
|
)
|
|
|
|
cache_key = f"{model_id}_async_client"
|
|
_client = openai.AsyncAzureOpenAI( # type: ignore
|
|
**azure_client_params,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
http_client=httpx.AsyncClient(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
), # type: ignore
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
if should_initialize_sync_client(
|
|
litellm_router_instance=litellm_router_instance
|
|
):
|
|
cache_key = f"{model_id}_client"
|
|
_client = openai.AzureOpenAI( # type: ignore
|
|
**azure_client_params,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
http_client=httpx.Client(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
), # type: ignore
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
|
|
# streaming clients should have diff timeouts
|
|
cache_key = f"{model_id}_stream_async_client"
|
|
_client = openai.AsyncAzureOpenAI( # type: ignore
|
|
**azure_client_params,
|
|
timeout=stream_timeout,
|
|
max_retries=max_retries,
|
|
http_client=httpx.AsyncClient(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
),
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
|
|
if should_initialize_sync_client(
|
|
litellm_router_instance=litellm_router_instance
|
|
):
|
|
cache_key = f"{model_id}_stream_client"
|
|
_client = openai.AzureOpenAI( # type: ignore
|
|
**azure_client_params,
|
|
timeout=stream_timeout,
|
|
max_retries=max_retries,
|
|
http_client=httpx.Client(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
),
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
|
|
else:
|
|
_api_key = api_key # type: ignore
|
|
if _api_key is not None and isinstance(_api_key, str):
|
|
# only show first 5 chars of api_key
|
|
_api_key = _api_key[:8] + "*" * 15
|
|
verbose_router_logger.debug(
|
|
f"Initializing OpenAI Client for {model_name}, Api Base:{str(api_base)}, Api Key:{_api_key}"
|
|
)
|
|
cache_key = f"{model_id}_async_client"
|
|
_client = openai.AsyncOpenAI( # type: ignore
|
|
api_key=api_key,
|
|
base_url=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=organization,
|
|
http_client=httpx.AsyncClient(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
), # type: ignore
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
|
|
if should_initialize_sync_client(
|
|
litellm_router_instance=litellm_router_instance
|
|
):
|
|
cache_key = f"{model_id}_client"
|
|
_client = openai.OpenAI( # type: ignore
|
|
api_key=api_key,
|
|
base_url=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=organization,
|
|
http_client=httpx.Client(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
), # type: ignore
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
|
|
# streaming clients should have diff timeouts
|
|
cache_key = f"{model_id}_stream_async_client"
|
|
_client = openai.AsyncOpenAI( # type: ignore
|
|
api_key=api_key,
|
|
base_url=api_base,
|
|
timeout=stream_timeout,
|
|
max_retries=max_retries,
|
|
organization=organization,
|
|
http_client=httpx.AsyncClient(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
), # type: ignore
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
|
|
if should_initialize_sync_client(
|
|
litellm_router_instance=litellm_router_instance
|
|
):
|
|
# streaming clients should have diff timeouts
|
|
cache_key = f"{model_id}_stream_client"
|
|
_client = openai.OpenAI( # type: ignore
|
|
api_key=api_key,
|
|
base_url=api_base,
|
|
timeout=stream_timeout,
|
|
max_retries=max_retries,
|
|
organization=organization,
|
|
http_client=httpx.Client(
|
|
limits=httpx.Limits(
|
|
max_connections=1000, max_keepalive_connections=100
|
|
),
|
|
verify=litellm.ssl_verify,
|
|
), # type: ignore
|
|
)
|
|
litellm_router_instance.cache.set_cache(
|
|
key=cache_key,
|
|
value=_client,
|
|
ttl=client_ttl,
|
|
local_only=True,
|
|
) # cache for 1 hr
|
|
|
|
|
|
def get_azure_ad_token_from_entrata_id(
|
|
tenant_id: str, client_id: str, client_secret: str
|
|
) -> Callable[[], str]:
|
|
from azure.identity import (
|
|
ClientSecretCredential,
|
|
DefaultAzureCredential,
|
|
get_bearer_token_provider,
|
|
)
|
|
|
|
verbose_router_logger.debug("Getting Azure AD Token from Entrata ID")
|
|
|
|
if tenant_id.startswith("os.environ/"):
|
|
tenant_id = litellm.get_secret(tenant_id)
|
|
|
|
if client_id.startswith("os.environ/"):
|
|
client_id = litellm.get_secret(client_id)
|
|
|
|
if client_secret.startswith("os.environ/"):
|
|
client_secret = litellm.get_secret(client_secret)
|
|
verbose_router_logger.debug(
|
|
"tenant_id %s, client_id %s, client_secret %s",
|
|
tenant_id,
|
|
client_id,
|
|
client_secret,
|
|
)
|
|
credential = ClientSecretCredential(tenant_id, client_id, client_secret)
|
|
|
|
verbose_router_logger.debug("credential %s", credential)
|
|
|
|
token_provider = get_bearer_token_provider(
|
|
credential, "https://cognitiveservices.azure.com/.default"
|
|
)
|
|
|
|
verbose_router_logger.debug("token_provider %s", token_provider)
|
|
|
|
return token_provider
|