mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
603 lines
26 KiB
Python
603 lines
26 KiB
Python
## Uses the huggingface text generation inference API
|
|
import os, copy, types
|
|
import json
|
|
from enum import Enum
|
|
import httpx, requests
|
|
from .base import BaseLLM
|
|
import time
|
|
import litellm
|
|
from typing import Callable, Dict, List, Any
|
|
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, Usage
|
|
from typing import Optional
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
|
|
|
class HuggingfaceError(Exception):
|
|
def __init__(self, status_code, message, request: Optional[httpx.Request]=None, response: Optional[httpx.Response]=None):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
if request is not None:
|
|
self.request = request
|
|
else:
|
|
self.request = httpx.Request(method="POST", url="https://api-inference.huggingface.co/models")
|
|
if response is not None:
|
|
self.response = response
|
|
else:
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
class HuggingfaceConfig():
|
|
"""
|
|
Reference: https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/compat_generate
|
|
"""
|
|
best_of: Optional[int] = None
|
|
decoder_input_details: Optional[bool] = None
|
|
details: Optional[bool] = True # enables returning logprobs + best of
|
|
max_new_tokens: Optional[int] = None
|
|
repetition_penalty: Optional[float] = None
|
|
return_full_text: Optional[bool] = False # by default don't return the input as part of the output
|
|
seed: Optional[int] = None
|
|
temperature: Optional[float] = None
|
|
top_k: Optional[int] = None
|
|
top_n_tokens: Optional[int] = None
|
|
top_p: Optional[int] = None
|
|
truncate: Optional[int] = None
|
|
typical_p: Optional[float] = None
|
|
watermark: Optional[bool] = None
|
|
|
|
def __init__(self,
|
|
best_of: Optional[int] = None,
|
|
decoder_input_details: Optional[bool] = None,
|
|
details: Optional[bool] = None,
|
|
max_new_tokens: Optional[int] = None,
|
|
repetition_penalty: Optional[float] = None,
|
|
return_full_text: Optional[bool] = None,
|
|
seed: Optional[int] = None,
|
|
temperature: Optional[float] = None,
|
|
top_k: Optional[int] = None,
|
|
top_n_tokens: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
truncate: Optional[int] = None,
|
|
typical_p: Optional[float] = None,
|
|
watermark: Optional[bool] = None
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
def output_parser(generated_text: str):
|
|
"""
|
|
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens.
|
|
|
|
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763
|
|
"""
|
|
chat_template_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"]
|
|
for token in chat_template_tokens:
|
|
if generated_text.strip().startswith(token):
|
|
generated_text = generated_text.replace(token, "", 1)
|
|
if generated_text.endswith(token):
|
|
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1]
|
|
return generated_text
|
|
|
|
tgi_models_cache = None
|
|
conv_models_cache = None
|
|
def read_tgi_conv_models():
|
|
try:
|
|
global tgi_models_cache, conv_models_cache
|
|
# Check if the cache is already populated
|
|
# so we don't keep on reading txt file if there are 1k requests
|
|
if (tgi_models_cache is not None) and (conv_models_cache is not None):
|
|
return tgi_models_cache, conv_models_cache
|
|
# If not, read the file and populate the cache
|
|
tgi_models = set()
|
|
script_directory = os.path.dirname(os.path.abspath(__file__))
|
|
# Construct the file path relative to the script's directory
|
|
file_path = os.path.join(script_directory, "huggingface_llms_metadata", "hf_text_generation_models.txt")
|
|
|
|
with open(file_path, 'r') as file:
|
|
for line in file:
|
|
tgi_models.add(line.strip())
|
|
|
|
# Cache the set for future use
|
|
tgi_models_cache = tgi_models
|
|
|
|
# If not, read the file and populate the cache
|
|
file_path = os.path.join(script_directory, "huggingface_llms_metadata", "hf_conversational_models.txt")
|
|
conv_models = set()
|
|
with open(file_path, 'r') as file:
|
|
for line in file:
|
|
conv_models.add(line.strip())
|
|
# Cache the set for future use
|
|
conv_models_cache = conv_models
|
|
return tgi_models, conv_models
|
|
except:
|
|
return set(), set()
|
|
|
|
|
|
def get_hf_task_for_model(model):
|
|
# read text file, cast it to set
|
|
# read the file called "huggingface_llms_metadata/hf_text_generation_models.txt"
|
|
tgi_models, conversational_models = read_tgi_conv_models()
|
|
if model in tgi_models:
|
|
return "text-generation-inference"
|
|
elif model in conversational_models:
|
|
return "conversational"
|
|
elif "roneneldan/TinyStories" in model:
|
|
return None
|
|
else:
|
|
return "text-generation-inference" # default to tgi
|
|
|
|
class Huggingface(BaseLLM):
|
|
_client_session: Optional[httpx.Client] = None
|
|
_aclient_session: Optional[httpx.AsyncClient] = None
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def validate_environment(self, api_key, headers):
|
|
default_headers = {
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key and headers is None:
|
|
default_headers["Authorization"] = f"Bearer {api_key}" # Huggingface Inference Endpoint default is to accept bearer tokens
|
|
headers = default_headers
|
|
elif headers:
|
|
headers=headers
|
|
else:
|
|
headers = default_headers
|
|
return headers
|
|
|
|
def convert_to_model_response_object(self,
|
|
completion_response,
|
|
model_response,
|
|
task,
|
|
optional_params,
|
|
encoding,
|
|
input_text,
|
|
model):
|
|
if task == "conversational":
|
|
if len(completion_response["generated_text"]) > 0: # type: ignore
|
|
model_response["choices"][0]["message"][
|
|
"content"
|
|
] = completion_response["generated_text"] # type: ignore
|
|
elif task == "text-generation-inference":
|
|
if len(completion_response[0]["generated_text"]) > 0:
|
|
model_response["choices"][0]["message"][
|
|
"content"
|
|
] = output_parser(completion_response[0]["generated_text"])
|
|
## GETTING LOGPROBS + FINISH REASON
|
|
if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]:
|
|
model_response.choices[0].finish_reason = completion_response[0]["details"]["finish_reason"]
|
|
sum_logprob = 0
|
|
for token in completion_response[0]["details"]["tokens"]:
|
|
if token["logprob"] != None:
|
|
sum_logprob += token["logprob"]
|
|
model_response["choices"][0]["message"]._logprob = sum_logprob
|
|
if "best_of" in optional_params and optional_params["best_of"] > 1:
|
|
if "details" in completion_response[0] and "best_of_sequences" in completion_response[0]["details"]:
|
|
choices_list = []
|
|
for idx, item in enumerate(completion_response[0]["details"]["best_of_sequences"]):
|
|
sum_logprob = 0
|
|
for token in item["tokens"]:
|
|
if token["logprob"] != None:
|
|
sum_logprob += token["logprob"]
|
|
if len(item["generated_text"]) > 0:
|
|
message_obj = Message(content=output_parser(item["generated_text"]), logprobs=sum_logprob)
|
|
else:
|
|
message_obj = Message(content=None)
|
|
choice_obj = Choices(finish_reason=item["finish_reason"], index=idx+1, message=message_obj)
|
|
choices_list.append(choice_obj)
|
|
model_response["choices"].extend(choices_list)
|
|
else:
|
|
if len(completion_response[0]["generated_text"]) > 0:
|
|
model_response["choices"][0]["message"][
|
|
"content"
|
|
] = output_parser(completion_response[0]["generated_text"])
|
|
## CALCULATING USAGE
|
|
prompt_tokens = 0
|
|
try:
|
|
prompt_tokens = len(
|
|
encoding.encode(input_text)
|
|
) ##[TODO] use the llama2 tokenizer here
|
|
except:
|
|
# this should remain non blocking we should not block a response returning if calculating usage fails
|
|
pass
|
|
output_text = model_response["choices"][0]["message"].get("content", "")
|
|
if output_text is not None and len(output_text) > 0:
|
|
completion_tokens = 0
|
|
try:
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
) ##[TODO] use the llama2 tokenizer here
|
|
except:
|
|
# this should remain non blocking we should not block a response returning if calculating usage fails
|
|
pass
|
|
else:
|
|
completion_tokens = 0
|
|
|
|
model_response["created"] = time.time()
|
|
model_response["model"] = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens
|
|
)
|
|
model_response.usage = usage
|
|
model_response._hidden_params["original_response"] = completion_response
|
|
return model_response
|
|
|
|
def completion(self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: Optional[str],
|
|
headers: Optional[dict],
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
custom_prompt_dict={},
|
|
acompletion: bool = False,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
super().completion()
|
|
exception_mapping_worked = False
|
|
try:
|
|
headers = self.validate_environment(api_key, headers)
|
|
task = get_hf_task_for_model(model)
|
|
print_verbose(f"{model}, {task}")
|
|
completion_url = ""
|
|
input_text = ""
|
|
if "https" in model:
|
|
completion_url = model
|
|
elif api_base:
|
|
completion_url = api_base
|
|
elif "HF_API_BASE" in os.environ:
|
|
completion_url = os.getenv("HF_API_BASE", "")
|
|
elif "HUGGINGFACE_API_BASE" in os.environ:
|
|
completion_url = os.getenv("HUGGINGFACE_API_BASE", "")
|
|
else:
|
|
completion_url = f"https://api-inference.huggingface.co/models/{model}"
|
|
|
|
## Load Config
|
|
config=litellm.HuggingfaceConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in optional_params: # completion(top_k=3) > huggingfaceConfig(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
### MAP INPUT PARAMS
|
|
if task == "conversational":
|
|
inference_params = copy.deepcopy(optional_params)
|
|
inference_params.pop("details")
|
|
inference_params.pop("return_full_text")
|
|
past_user_inputs = []
|
|
generated_responses = []
|
|
text = ""
|
|
for message in messages:
|
|
if message["role"] == "user":
|
|
if text != "":
|
|
past_user_inputs.append(text)
|
|
text = message["content"]
|
|
elif message["role"] == "assistant" or message["role"] == "system":
|
|
generated_responses.append(message["content"])
|
|
data = {
|
|
"inputs": {
|
|
"text": text,
|
|
"past_user_inputs": past_user_inputs,
|
|
"generated_responses": generated_responses
|
|
},
|
|
"parameters": inference_params
|
|
}
|
|
input_text = "".join(message["content"] for message in messages)
|
|
elif task == "text-generation-inference":
|
|
# always send "details" and "return_full_text" as params
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", None),
|
|
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
|
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
|
messages=messages
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
data = {
|
|
"inputs": prompt,
|
|
"parameters": optional_params,
|
|
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False,
|
|
}
|
|
input_text = prompt
|
|
else:
|
|
# Non TGI and Conversational llms
|
|
# We need this branch, it removes 'details' and 'return_full_text' from params
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", {}),
|
|
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
|
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
|
bos_token=model_prompt_details.get("bos_token", ""),
|
|
eos_token=model_prompt_details.get("eos_token", ""),
|
|
messages=messages,
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
inference_params = copy.deepcopy(optional_params)
|
|
inference_params.pop("details")
|
|
inference_params.pop("return_full_text")
|
|
data = {
|
|
"inputs": prompt,
|
|
"parameters": inference_params,
|
|
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False,
|
|
}
|
|
input_text = prompt
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input_text,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data, "task": task, "headers": headers, "api_base": completion_url, "acompletion": acompletion},
|
|
)
|
|
## COMPLETION CALL
|
|
if acompletion is True:
|
|
### ASYNC STREAMING
|
|
if optional_params.get("stream", False):
|
|
return self.async_streaming(logging_obj=logging_obj, api_base=completion_url, data=data, headers=headers, model_response=model_response, model=model) # type: ignore
|
|
else:
|
|
### ASYNC COMPLETION
|
|
return self.acompletion(api_base=completion_url, data=data, headers=headers, model_response=model_response, task=task, encoding=encoding, input_text=input_text, model=model, optional_params=optional_params) # type: ignore
|
|
### SYNC STREAMING
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
response = requests.post(
|
|
completion_url,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
stream=optional_params["stream"]
|
|
)
|
|
return response.iter_lines()
|
|
### SYNC COMPLETION
|
|
else:
|
|
response = requests.post(
|
|
completion_url,
|
|
headers=headers,
|
|
data=json.dumps(data)
|
|
)
|
|
|
|
## Some servers might return streaming responses even though stream was not set to true. (e.g. Baseten)
|
|
is_streamed = False
|
|
if response.__dict__['headers'].get("Content-Type", "") == "text/event-stream":
|
|
is_streamed = True
|
|
|
|
# iterate over the complete streamed response, and return the final answer
|
|
if is_streamed:
|
|
streamed_response = CustomStreamWrapper(completion_stream=response.iter_lines(), model=model, custom_llm_provider="huggingface", logging_obj=logging_obj)
|
|
content = ""
|
|
for chunk in streamed_response:
|
|
content += chunk["choices"][0]["delta"]["content"]
|
|
completion_response: List[Dict[str, Any]] = [{"generated_text": content}]
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input_text,
|
|
api_key=api_key,
|
|
original_response=completion_response,
|
|
additional_args={"complete_input_dict": data, "task": task},
|
|
)
|
|
else:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input_text,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data, "task": task},
|
|
)
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = response.json()
|
|
except:
|
|
import traceback
|
|
raise HuggingfaceError(
|
|
message=f"Original Response received: {response.text}; Stacktrace: {traceback.format_exc()}", status_code=response.status_code
|
|
)
|
|
print_verbose(f"response: {completion_response}")
|
|
if isinstance(completion_response, dict) and "error" in completion_response:
|
|
print_verbose(f"completion error: {completion_response['error']}")
|
|
print_verbose(f"response.status_code: {response.status_code}")
|
|
raise HuggingfaceError(
|
|
message=completion_response["error"],
|
|
status_code=response.status_code,
|
|
)
|
|
|
|
return self.convert_to_model_response_object(
|
|
completion_response=completion_response,
|
|
model_response=model_response,
|
|
task=task,
|
|
optional_params=optional_params,
|
|
encoding=encoding,
|
|
input_text=input_text,
|
|
model=model
|
|
)
|
|
except HuggingfaceError as e:
|
|
exception_mapping_worked = True
|
|
raise e
|
|
except Exception as e:
|
|
if exception_mapping_worked:
|
|
raise e
|
|
else:
|
|
import traceback
|
|
raise HuggingfaceError(status_code=500, message=traceback.format_exc())
|
|
|
|
async def acompletion(self,
|
|
api_base: str,
|
|
data: dict,
|
|
headers: dict,
|
|
model_response: ModelResponse,
|
|
task: str,
|
|
encoding: Any,
|
|
input_text: str,
|
|
model: str,
|
|
optional_params: dict):
|
|
response = None
|
|
try:
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.post(url=api_base, json=data, headers=headers)
|
|
response_json = response.json()
|
|
if response.status_code != 200:
|
|
raise HuggingfaceError(status_code=response.status_code, message=response.text, request=response.request, response=response)
|
|
|
|
## RESPONSE OBJECT
|
|
return self.convert_to_model_response_object(completion_response=response_json,
|
|
model_response=model_response,
|
|
task=task,
|
|
encoding=encoding,
|
|
input_text=input_text,
|
|
model=model,
|
|
optional_params=optional_params)
|
|
except Exception as e:
|
|
if isinstance(e,httpx.TimeoutException):
|
|
raise HuggingfaceError(status_code=500, message="Request Timeout Error")
|
|
elif response is not None and hasattr(response, "text"):
|
|
raise HuggingfaceError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
|
|
else:
|
|
raise HuggingfaceError(status_code=500, message=f"{str(e)}")
|
|
|
|
async def async_streaming(self,
|
|
logging_obj,
|
|
api_base: str,
|
|
data: dict,
|
|
headers: dict,
|
|
model_response: ModelResponse,
|
|
model: str):
|
|
async with httpx.AsyncClient() as client:
|
|
response = client.stream(
|
|
"POST",
|
|
url=f"{api_base}",
|
|
json=data,
|
|
headers=headers
|
|
)
|
|
async with response as r:
|
|
if r.status_code != 200:
|
|
raise HuggingfaceError(status_code=r.status_code, message="An error occurred while streaming")
|
|
|
|
streamwrapper = CustomStreamWrapper(completion_stream=r.aiter_lines(), model=model, custom_llm_provider="huggingface",logging_obj=logging_obj)
|
|
async for transformed_chunk in streamwrapper:
|
|
yield transformed_chunk
|
|
|
|
def embedding(self,
|
|
model: str,
|
|
input: list,
|
|
api_key: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
logging_obj=None,
|
|
model_response=None,
|
|
encoding=None,
|
|
):
|
|
super().embedding()
|
|
headers = self.validate_environment(api_key, headers=None)
|
|
# print_verbose(f"{model}, {task}")
|
|
embed_url = ""
|
|
if "https" in model:
|
|
embed_url = model
|
|
elif api_base:
|
|
embed_url = api_base
|
|
elif "HF_API_BASE" in os.environ:
|
|
embed_url = os.getenv("HF_API_BASE", "")
|
|
elif "HUGGINGFACE_API_BASE" in os.environ:
|
|
embed_url = os.getenv("HUGGINGFACE_API_BASE", "")
|
|
else:
|
|
embed_url = f"https://api-inference.huggingface.co/models/{model}"
|
|
|
|
if "sentence-transformers" in model:
|
|
if len(input) == 0:
|
|
raise HuggingfaceError(status_code=400, message="sentence transformers requires 2+ sentences")
|
|
data = {
|
|
"inputs": {
|
|
"source_sentence": input[0],
|
|
"sentences": [ "That is a happy dog", "That is a very happy person", "Today is a sunny day" ]
|
|
}
|
|
}
|
|
else:
|
|
data = {
|
|
"inputs": input # type: ignore
|
|
}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
## COMPLETION CALL
|
|
response = requests.post(
|
|
embed_url, headers=headers, data=json.dumps(data)
|
|
)
|
|
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response,
|
|
)
|
|
|
|
|
|
embeddings = response.json()
|
|
|
|
if "error" in embeddings:
|
|
raise HuggingfaceError(status_code=500, message=embeddings['error'])
|
|
|
|
output_data = []
|
|
if "similarities" in embeddings:
|
|
for idx, embedding in embeddings["similarities"]:
|
|
output_data.append(
|
|
{
|
|
"object": "embedding",
|
|
"index": idx,
|
|
"embedding": embedding # flatten list returned from hf
|
|
}
|
|
)
|
|
else:
|
|
for idx, embedding in enumerate(embeddings):
|
|
if isinstance(embedding, float):
|
|
output_data.append(
|
|
{
|
|
"object": "embedding",
|
|
"index": idx,
|
|
"embedding": embedding # flatten list returned from hf
|
|
}
|
|
)
|
|
else:
|
|
output_data.append(
|
|
{
|
|
"object": "embedding",
|
|
"index": idx,
|
|
"embedding": embedding[0][0] # flatten list returned from hf
|
|
}
|
|
)
|
|
model_response["object"] = "list"
|
|
model_response["data"] = output_data
|
|
model_response["model"] = model
|
|
input_tokens = 0
|
|
for text in input:
|
|
input_tokens+=len(encoding.encode(text))
|
|
|
|
model_response["usage"] = {
|
|
"prompt_tokens": input_tokens,
|
|
"total_tokens": input_tokens,
|
|
}
|
|
return model_response
|
|
|
|
|
|
|