litellm-mirror/litellm/proxy/hooks/managed_files.py
Krish Dholakia 0415f1205e
Litellm dev 04 10 2025 p3 (#9903)
* feat(managed_files.py): encode file type in unified file id

simplify calling gemini models

* fix(common_utils.py): fix extracting file type from unified file id

* fix(litellm_logging.py): create standard logging payload for create file call

* fix: fix linting error
2025-04-11 09:29:42 -07:00

158 lines
5.6 KiB
Python

# What is this?
## This hook is used to check for LiteLLM managed files in the request body, and replace them with model-specific file id
import uuid
from datetime import datetime
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Union, cast
from litellm import verbose_logger
from litellm.caching.caching import DualCache
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.prompt_templates.common_utils import (
extract_file_data,
get_file_ids_from_messages,
)
from litellm.proxy._types import CallTypes, UserAPIKeyAuth
from litellm.types.llms.openai import (
CreateFileRequest,
OpenAIFileObject,
OpenAIFilesPurpose,
)
from litellm.types.utils import SpecialEnums
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
from litellm.proxy.utils import InternalUsageCache as _InternalUsageCache
Span = Union[_Span, Any]
InternalUsageCache = _InternalUsageCache
else:
Span = Any
InternalUsageCache = Any
class _PROXY_LiteLLMManagedFiles(CustomLogger):
# Class variables or attributes
def __init__(self, internal_usage_cache: InternalUsageCache):
self.internal_usage_cache = internal_usage_cache
async def async_pre_call_hook(
self,
user_api_key_dict: UserAPIKeyAuth,
cache: DualCache,
data: Dict,
call_type: Literal[
"completion",
"text_completion",
"embeddings",
"image_generation",
"moderation",
"audio_transcription",
"pass_through_endpoint",
"rerank",
],
) -> Union[Exception, str, Dict, None]:
"""
- Detect litellm_proxy/ file_id
- add dictionary of mappings of litellm_proxy/ file_id -> provider_file_id => {litellm_proxy/file_id: {"model_id": id, "file_id": provider_file_id}}
"""
if call_type == CallTypes.completion.value:
messages = data.get("messages")
if messages:
file_ids = get_file_ids_from_messages(messages)
if file_ids:
model_file_id_mapping = await self.get_model_file_id_mapping(
file_ids, user_api_key_dict.parent_otel_span
)
data["model_file_id_mapping"] = model_file_id_mapping
return data
async def get_model_file_id_mapping(
self, file_ids: List[str], litellm_parent_otel_span: Span
) -> dict:
"""
Get model-specific file IDs for a list of proxy file IDs.
Returns a dictionary mapping litellm_proxy/ file_id -> model_id -> model_file_id
1. Get all the litellm_proxy/ file_ids from the messages
2. For each file_id, search for cache keys matching the pattern file_id:*
3. Return a dictionary of mappings of litellm_proxy/ file_id -> model_id -> model_file_id
Example:
{
"litellm_proxy/file_id": {
"model_id": "model_file_id"
}
}
"""
file_id_mapping: Dict[str, Dict[str, str]] = {}
litellm_managed_file_ids = []
for file_id in file_ids:
## CHECK IF FILE ID IS MANAGED BY LITELM
if file_id.startswith(SpecialEnums.LITELM_MANAGED_FILE_ID_PREFIX.value):
litellm_managed_file_ids.append(file_id)
if litellm_managed_file_ids:
# Get all cache keys matching the pattern file_id:*
for file_id in litellm_managed_file_ids:
# Search for any cache key starting with this file_id
cached_values = cast(
Dict[str, str],
await self.internal_usage_cache.async_get_cache(
key=file_id, litellm_parent_otel_span=litellm_parent_otel_span
),
)
if cached_values:
file_id_mapping[file_id] = cached_values
return file_id_mapping
@staticmethod
async def return_unified_file_id(
file_objects: List[OpenAIFileObject],
create_file_request: CreateFileRequest,
purpose: OpenAIFilesPurpose,
internal_usage_cache: InternalUsageCache,
litellm_parent_otel_span: Span,
) -> OpenAIFileObject:
## GET THE FILE TYPE FROM THE CREATE FILE REQUEST
file_data = extract_file_data(create_file_request["file"])
file_type = file_data["content_type"]
unified_file_id = SpecialEnums.LITELLM_MANAGED_FILE_COMPLETE_STR.value.format(
file_type, str(uuid.uuid4())
)
## CREATE RESPONSE OBJECT
## CREATE RESPONSE OBJECT
response = OpenAIFileObject(
id=unified_file_id,
object="file",
purpose=cast(OpenAIFilesPurpose, purpose),
created_at=file_objects[0].created_at,
bytes=1234,
filename=str(datetime.now().timestamp()),
status="uploaded",
)
## STORE RESPONSE IN DB + CACHE
stored_values: Dict[str, str] = {}
for file_object in file_objects:
model_id = file_object._hidden_params.get("model_id")
if model_id is None:
verbose_logger.warning(
f"Skipping file_object: {file_object} because model_id in hidden_params={file_object._hidden_params} is None"
)
continue
file_id = file_object.id
stored_values[model_id] = file_id
await internal_usage_cache.async_set_cache(
key=unified_file_id,
value=stored_values,
litellm_parent_otel_span=litellm_parent_otel_span,
)
return response