mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
* test: fix import for test
* fix: fix bad error string
* docs: cleanup files docs
* fix(files/main.py): cleanup error string
* style: initial commit with a provider/config pattern for files api
google ai studio files api onboarding
* fix: test
* feat(gemini/files/transformation.py): support gemini files api response transformation
* fix(gemini/files/transformation.py): return file id as gemini uri
allows id to be passed in to chat completion request, just like openai
* feat(llm_http_handler.py): support async route for files api on llm_http_handler
* fix: fix linting errors
* fix: fix model info check
* fix: fix ruff errors
* fix: fix linting errors
* Revert "fix: fix linting errors"
This reverts commit 926a5a527f
.
* fix: fix linting errors
* test: fix test
* test: fix tests
283 lines
10 KiB
Python
283 lines
10 KiB
Python
from typing import Any, Coroutine, Optional, Union, cast
|
|
|
|
import httpx
|
|
from openai import AsyncAzureOpenAI, AzureOpenAI
|
|
from openai.types.file_deleted import FileDeleted
|
|
|
|
from litellm._logging import verbose_logger
|
|
from litellm.types.llms.openai import *
|
|
|
|
from ..common_utils import BaseAzureLLM
|
|
|
|
|
|
class AzureOpenAIFilesAPI(BaseAzureLLM):
|
|
"""
|
|
AzureOpenAI methods to support for batches
|
|
- create_file()
|
|
- retrieve_file()
|
|
- list_files()
|
|
- delete_file()
|
|
- file_content()
|
|
- update_file()
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
async def acreate_file(
|
|
self,
|
|
create_file_data: CreateFileRequest,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> FileObject:
|
|
verbose_logger.debug("create_file_data=%s", create_file_data)
|
|
response = await openai_client.files.create(**create_file_data)
|
|
verbose_logger.debug("create_file_response=%s", response)
|
|
return response
|
|
|
|
def create_file(
|
|
self,
|
|
_is_async: bool,
|
|
create_file_data: CreateFileRequest,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
api_version: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
litellm_params: Optional[dict] = None,
|
|
) -> Union[OpenAIFileObject, Coroutine[Any, Any, OpenAIFileObject]]:
|
|
openai_client: Optional[
|
|
Union[AzureOpenAI, AsyncAzureOpenAI]
|
|
] = self.get_azure_openai_client(
|
|
litellm_params=litellm_params or {},
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.acreate_file( # type: ignore
|
|
create_file_data=create_file_data, openai_client=openai_client
|
|
)
|
|
response = cast(AzureOpenAI, openai_client).files.create(**create_file_data)
|
|
return OpenAIFileObject(**response.model_dump())
|
|
|
|
async def afile_content(
|
|
self,
|
|
file_content_request: FileContentRequest,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> HttpxBinaryResponseContent:
|
|
response = await openai_client.files.content(**file_content_request)
|
|
return HttpxBinaryResponseContent(response=response.response)
|
|
|
|
def file_content(
|
|
self,
|
|
_is_async: bool,
|
|
file_content_request: FileContentRequest,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
litellm_params: Optional[dict] = None,
|
|
) -> Union[
|
|
HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]
|
|
]:
|
|
openai_client: Optional[
|
|
Union[AzureOpenAI, AsyncAzureOpenAI]
|
|
] = self.get_azure_openai_client(
|
|
litellm_params=litellm_params or {},
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.afile_content( # type: ignore
|
|
file_content_request=file_content_request,
|
|
openai_client=openai_client,
|
|
)
|
|
response = cast(AzureOpenAI, openai_client).files.content(
|
|
**file_content_request
|
|
)
|
|
|
|
return HttpxBinaryResponseContent(response=response.response)
|
|
|
|
async def aretrieve_file(
|
|
self,
|
|
file_id: str,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> FileObject:
|
|
response = await openai_client.files.retrieve(file_id=file_id)
|
|
return response
|
|
|
|
def retrieve_file(
|
|
self,
|
|
_is_async: bool,
|
|
file_id: str,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
litellm_params: Optional[dict] = None,
|
|
):
|
|
openai_client: Optional[
|
|
Union[AzureOpenAI, AsyncAzureOpenAI]
|
|
] = self.get_azure_openai_client(
|
|
litellm_params=litellm_params or {},
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.aretrieve_file( # type: ignore
|
|
file_id=file_id,
|
|
openai_client=openai_client,
|
|
)
|
|
response = openai_client.files.retrieve(file_id=file_id)
|
|
|
|
return response
|
|
|
|
async def adelete_file(
|
|
self,
|
|
file_id: str,
|
|
openai_client: AsyncAzureOpenAI,
|
|
) -> FileDeleted:
|
|
response = await openai_client.files.delete(file_id=file_id)
|
|
|
|
if not isinstance(response, FileDeleted): # azure returns an empty string
|
|
return FileDeleted(id=file_id, deleted=True, object="file")
|
|
return response
|
|
|
|
def delete_file(
|
|
self,
|
|
_is_async: bool,
|
|
file_id: str,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
organization: Optional[str] = None,
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
litellm_params: Optional[dict] = None,
|
|
):
|
|
openai_client: Optional[
|
|
Union[AzureOpenAI, AsyncAzureOpenAI]
|
|
] = self.get_azure_openai_client(
|
|
litellm_params=litellm_params or {},
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.adelete_file( # type: ignore
|
|
file_id=file_id,
|
|
openai_client=openai_client,
|
|
)
|
|
response = openai_client.files.delete(file_id=file_id)
|
|
|
|
if not isinstance(response, FileDeleted): # azure returns an empty string
|
|
return FileDeleted(id=file_id, deleted=True, object="file")
|
|
|
|
return response
|
|
|
|
async def alist_files(
|
|
self,
|
|
openai_client: AsyncAzureOpenAI,
|
|
purpose: Optional[str] = None,
|
|
):
|
|
if isinstance(purpose, str):
|
|
response = await openai_client.files.list(purpose=purpose)
|
|
else:
|
|
response = await openai_client.files.list()
|
|
return response
|
|
|
|
def list_files(
|
|
self,
|
|
_is_async: bool,
|
|
api_base: Optional[str],
|
|
api_key: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
purpose: Optional[str] = None,
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
litellm_params: Optional[dict] = None,
|
|
):
|
|
openai_client: Optional[
|
|
Union[AzureOpenAI, AsyncAzureOpenAI]
|
|
] = self.get_azure_openai_client(
|
|
litellm_params=litellm_params or {},
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"AzureOpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"AzureOpenAI client is not an instance of AsyncAzureOpenAI. Make sure you passed an AsyncAzureOpenAI client."
|
|
)
|
|
return self.alist_files( # type: ignore
|
|
purpose=purpose,
|
|
openai_client=openai_client,
|
|
)
|
|
|
|
if isinstance(purpose, str):
|
|
response = openai_client.files.list(purpose=purpose)
|
|
else:
|
|
response = openai_client.files.list()
|
|
|
|
return response
|