litellm-mirror/litellm/llms/gemini/files/transformation.py
Krish Dholakia 0519c0c507 Add Google AI Studio /v1/files upload API support (#9645)
* test: fix import for test

* fix: fix bad error string

* docs: cleanup files docs

* fix(files/main.py): cleanup error string

* style: initial commit with a provider/config pattern for files api

google ai studio files api onboarding

* fix: test

* feat(gemini/files/transformation.py): support gemini files api response transformation

* fix(gemini/files/transformation.py): return file id as gemini uri

allows id to be passed in to chat completion request, just like openai

* feat(llm_http_handler.py): support async route for files api on llm_http_handler

* fix: fix linting errors

* fix: fix model info check

* fix: fix ruff errors

* fix: fix linting errors

* Revert "fix: fix linting errors"

This reverts commit 926a5a527f.

* fix: fix linting errors

* test: fix test

* test: fix tests
2025-04-02 08:56:58 -07:00

207 lines
6.5 KiB
Python

"""
Supports writing files to Google AI Studio Files API.
For vertex ai, check out the vertex_ai/files/handler.py file.
"""
import time
from typing import List, Mapping, Optional
import httpx
from litellm._logging import verbose_logger
from litellm.llms.base_llm.files.transformation import (
BaseFilesConfig,
LiteLLMLoggingObj,
)
from litellm.types.llms.gemini import GeminiCreateFilesResponseObject
from litellm.types.llms.openai import (
CreateFileRequest,
OpenAICreateFileRequestOptionalParams,
OpenAIFileObject,
)
from litellm.types.utils import LlmProviders
from ..common_utils import GeminiModelInfo
class GoogleAIStudioFilesHandler(GeminiModelInfo, BaseFilesConfig):
def __init__(self):
pass
@property
def custom_llm_provider(self) -> LlmProviders:
return LlmProviders.GEMINI
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
"""
OPTIONAL
Get the complete url for the request
Some providers need `model` in `api_base`
"""
endpoint = "upload/v1beta/files"
api_base = self.get_api_base(api_base)
if not api_base:
raise ValueError("api_base is required")
if not api_key:
raise ValueError("api_key is required")
url = "{}/{}?key={}".format(api_base, endpoint, api_key)
return url
def get_supported_openai_params(
self, model: str
) -> List[OpenAICreateFileRequestOptionalParams]:
return []
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
return optional_params
def transform_create_file_request(
self,
model: str,
create_file_data: CreateFileRequest,
optional_params: dict,
litellm_params: dict,
) -> dict:
"""
Transform the OpenAI-style file creation request into Gemini's format
Returns:
dict: Contains both request data and headers for the two-step upload
"""
# Extract the file information
file_data = create_file_data.get("file")
if file_data is None:
raise ValueError("File data is required")
# Parse the file_data based on its type
filename = None
file_content = None
content_type = None
file_headers: Mapping[str, str] = {}
if isinstance(file_data, tuple):
if len(file_data) == 2:
filename, file_content = file_data
elif len(file_data) == 3:
filename, file_content, content_type = file_data
elif len(file_data) == 4:
filename, file_content, content_type, file_headers = file_data
else:
file_content = file_data
# Handle the file content based on its type
import io
from os import PathLike
# Convert content to bytes
if isinstance(file_content, (str, PathLike)):
# If it's a path, open and read the file
with open(file_content, "rb") as f:
content = f.read()
elif isinstance(file_content, io.IOBase):
# If it's a file-like object
content = file_content.read()
if isinstance(content, str):
content = content.encode("utf-8")
elif isinstance(file_content, bytes):
content = file_content
else:
raise ValueError(f"Unsupported file content type: {type(file_content)}")
# Get file size
file_size = len(content)
# Use provided content type or guess based on filename
if not content_type:
import mimetypes
content_type = (
mimetypes.guess_type(filename)[0]
if filename
else "application/octet-stream"
)
# Step 1: Initial resumable upload request
headers = {
"X-Goog-Upload-Protocol": "resumable",
"X-Goog-Upload-Command": "start",
"X-Goog-Upload-Header-Content-Length": str(file_size),
"X-Goog-Upload-Header-Content-Type": content_type,
"Content-Type": "application/json",
}
headers.update(file_headers) # Add any custom headers
# Initial metadata request body
initial_data = {"file": {"display_name": filename or str(int(time.time()))}}
# Step 2: Actual file upload data
upload_headers = {
"Content-Length": str(file_size),
"X-Goog-Upload-Offset": "0",
"X-Goog-Upload-Command": "upload, finalize",
}
return {
"initial_request": {"headers": headers, "data": initial_data},
"upload_request": {"headers": upload_headers, "data": content},
}
def transform_create_file_response(
self,
model: Optional[str],
raw_response: httpx.Response,
logging_obj: LiteLLMLoggingObj,
litellm_params: dict,
) -> OpenAIFileObject:
"""
Transform Gemini's file upload response into OpenAI-style FileObject
"""
try:
response_json = raw_response.json()
response_object = GeminiCreateFilesResponseObject(
**response_json.get("file", {}) # type: ignore
)
# Extract file information from Gemini response
return OpenAIFileObject(
id=response_object["uri"], # Gemini uses URI as identifier
bytes=int(
response_object["sizeBytes"]
), # Gemini doesn't return file size
created_at=int(
time.mktime(
time.strptime(
response_object["createTime"].replace("Z", "+00:00"),
"%Y-%m-%dT%H:%M:%S.%f%z",
)
)
),
filename=response_object["displayName"],
object="file",
purpose="user_data", # Default to assistants as that's the main use case
status="uploaded",
status_details=None,
)
except Exception as e:
verbose_logger.exception(f"Error parsing file upload response: {str(e)}")
raise ValueError(f"Error parsing file upload response: {str(e)}")