mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
109 lines
No EOL
2.9 KiB
Python
109 lines
No EOL
2.9 KiB
Python
#### What this tests ####
|
|
# This tests calling batch_completions by running 100 messages together
|
|
|
|
import sys, os
|
|
import traceback
|
|
import pytest
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import litellm
|
|
from litellm import Router
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
|
|
def test_multiple_deployments():
|
|
model_list = [{ # list of model deployments
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-v-2",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE")
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800
|
|
}, {
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "azure/chatgpt-functioncalling",
|
|
"api_key": os.getenv("AZURE_API_KEY"),
|
|
"api_version": os.getenv("AZURE_API_VERSION"),
|
|
"api_base": os.getenv("AZURE_API_BASE")
|
|
},
|
|
"tpm": 240000,
|
|
"rpm": 1800
|
|
}, {
|
|
"model_name": "gpt-3.5-turbo", # openai model name
|
|
"litellm_params": { # params for litellm completion/embedding call
|
|
"model": "gpt-3.5-turbo",
|
|
"api_key": os.getenv("OPENAI_API_KEY"),
|
|
},
|
|
"tpm": 1000000,
|
|
"rpm": 9000
|
|
}]
|
|
|
|
router = Router(model_list=model_list, redis_host=os.getenv("REDIS_HOST"), redis_password=os.getenv("REDIS_PASSWORD"), redis_port=int(os.getenv("REDIS_PORT"))) # type: ignore
|
|
|
|
completions = []
|
|
with ThreadPoolExecutor(max_workers=100) as executor:
|
|
kwargs = {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [{"role": "user", "content": "Hey, how's it going?"}]
|
|
}
|
|
for _ in range(20):
|
|
future = executor.submit(router.completion, **kwargs) # type: ignore
|
|
completions.append(future)
|
|
|
|
# Retrieve the results from the futures
|
|
results = [future.result() for future in completions]
|
|
|
|
print(results)
|
|
|
|
### FUNCTION CALLING
|
|
|
|
def test_function_calling():
|
|
litellm.set_verbose =True
|
|
model_list = [
|
|
{
|
|
"model_name": "gpt-3.5-turbo-0613",
|
|
"litellm_params": {
|
|
"model": "gpt-3.5-turbo-0613",
|
|
"api_key": "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",
|
|
},
|
|
"tpm": 100000,
|
|
"rpm": 10000,
|
|
},
|
|
]
|
|
|
|
messages = [
|
|
{"role": "user", "content": "What is the weather like in Boston?"}
|
|
]
|
|
functions = [
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA"
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"]
|
|
}
|
|
},
|
|
"required": ["location"]
|
|
}
|
|
}
|
|
]
|
|
|
|
router = Router(model_list=model_list)
|
|
response = router.completion(model="gpt-3.5-turbo-0613", messages=messages, functions=functions)
|
|
print(response)
|
|
|
|
test_function_calling() |