mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
144 lines
5.4 KiB
Python
144 lines
5.4 KiB
Python
import json
|
|
import os
|
|
from datetime import datetime
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import httpx
|
|
from pydantic import BaseModel, Field
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_logger
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
|
from litellm.proxy._types import SpendLogsPayload
|
|
|
|
|
|
class GCSBucketPayload(SpendLogsPayload):
|
|
messages: Optional[List]
|
|
output: Optional[Union[Dict, str, List]]
|
|
|
|
|
|
class GCSBucketLogger(CustomLogger):
|
|
def __init__(self) -> None:
|
|
self.async_httpx_client = AsyncHTTPHandler(
|
|
timeout=httpx.Timeout(timeout=600.0, connect=5.0)
|
|
)
|
|
self.path_service_account_json = os.getenv("GCS_PATH_SERVICE_ACCOUNT", None)
|
|
self.BUCKET_NAME = os.getenv("GCS_BUCKET_NAME", None)
|
|
|
|
if self.BUCKET_NAME is None:
|
|
raise ValueError(
|
|
"GCS_BUCKET_NAME is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_BUCKET_NAME' in the environment."
|
|
)
|
|
|
|
if self.path_service_account_json is None:
|
|
raise ValueError(
|
|
"GCS_PATH_SERVICE_ACCOUNT is not set in the environment, but GCS Bucket is being used as a logging callback. Please set 'GCS_PATH_SERVICE_ACCOUNT' in the environment."
|
|
)
|
|
pass
|
|
|
|
#### ASYNC ####
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
try:
|
|
verbose_logger.debug(
|
|
"GCS Logger: async_log_success_event logging kwargs: %s, response_obj: %s",
|
|
kwargs,
|
|
response_obj,
|
|
)
|
|
headers = await self.construct_request_headers()
|
|
logging_payload: GCSBucketPayload = await self.get_gcs_payload(
|
|
kwargs, response_obj, start_time, end_time
|
|
)
|
|
|
|
object_name = logging_payload["request_id"]
|
|
response = await self.async_httpx_client.post(
|
|
headers=headers,
|
|
url=f"https://storage.googleapis.com/upload/storage/v1/b/{self.BUCKET_NAME}/o?uploadType=media&name={object_name}",
|
|
json=logging_payload,
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
verbose_logger.error("GCS Bucket logging error: %s", str(response.text))
|
|
|
|
verbose_logger.debug("GCS Bucket response %s", response)
|
|
verbose_logger.debug("GCS Bucket status code %s", response.status_code)
|
|
verbose_logger.debug("GCS Bucket response.text %s", response.text)
|
|
except Exception as e:
|
|
verbose_logger.error("GCS Bucket logging error: %s", str(e))
|
|
|
|
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
pass
|
|
|
|
async def construct_request_headers(self) -> Dict[str, str]:
|
|
from litellm import vertex_chat_completion
|
|
|
|
auth_header, _ = vertex_chat_completion._get_token_and_url(
|
|
model="gcs-bucket",
|
|
vertex_credentials=self.path_service_account_json,
|
|
vertex_project=None,
|
|
vertex_location=None,
|
|
gemini_api_key=None,
|
|
stream=None,
|
|
custom_llm_provider="vertex_ai",
|
|
api_base=None,
|
|
)
|
|
verbose_logger.debug("constructed auth_header %s", auth_header)
|
|
headers = {
|
|
"Authorization": f"Bearer {auth_header}", # auth_header
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
return headers
|
|
|
|
async def get_gcs_payload(
|
|
self, kwargs, response_obj, start_time, end_time
|
|
) -> GCSBucketPayload:
|
|
from litellm.proxy.spend_tracking.spend_tracking_utils import (
|
|
get_logging_payload,
|
|
)
|
|
|
|
spend_logs_payload: GCSBucketPayload = get_logging_payload(
|
|
kwargs=kwargs,
|
|
response_obj=response_obj,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
end_user_id=kwargs.get("user"),
|
|
)
|
|
spend_logs_payload["startTime"] = start_time.isoformat()
|
|
spend_logs_payload["endTime"] = end_time.isoformat()
|
|
spend_logs_payload["completionStartTime"] = spend_logs_payload[
|
|
"completionStartTime"
|
|
].isoformat()
|
|
|
|
object_name = spend_logs_payload["request_id"]
|
|
output = None
|
|
if response_obj is not None and (
|
|
kwargs.get("call_type", None) == "embedding"
|
|
or isinstance(response_obj, litellm.EmbeddingResponse)
|
|
):
|
|
output = None
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.ModelResponse
|
|
):
|
|
output_list = []
|
|
for choice in response_obj.choices:
|
|
output_list.append(choice.json())
|
|
output = output_list
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.TextCompletionResponse
|
|
):
|
|
output_list = []
|
|
for choice in response_obj.choices:
|
|
output_list.append(choice.json())
|
|
output = output_list
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.ImageResponse
|
|
):
|
|
output = response_obj["data"]
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.TranscriptionResponse
|
|
):
|
|
output = response_obj["text"]
|
|
|
|
spend_logs_payload["output"] = output
|
|
return spend_logs_payload
|