litellm-mirror/litellm/llms/base.py
Krish Dholakia 60709a0753
LiteLLM Minor Fixes and Improvements (09/13/2024) (#5689)
* refactor: cleanup unused variables + fix pyright errors

* feat(health_check.py): Closes https://github.com/BerriAI/litellm/issues/5686

* fix(o1_reasoning.py): add stricter check for o-1 reasoning model

* refactor(mistral/): make it easier to see mistral transformation logic

* fix(openai.py): fix openai o-1 model param mapping

Fixes https://github.com/BerriAI/litellm/issues/5685

* feat(main.py): infer finetuned gemini model from base model

Fixes https://github.com/BerriAI/litellm/issues/5678

* docs(vertex.md): update docs to call finetuned gemini models

* feat(proxy_server.py): allow admin to hide proxy model aliases

Closes https://github.com/BerriAI/litellm/issues/5692

* docs(load_balancing.md): add docs on hiding alias models from proxy config

* fix(base.py): don't raise notimplemented error

* fix(user_api_key_auth.py): fix model max budget check

* fix(router.py): fix elif

* fix(user_api_key_auth.py): don't set team_id to empty str

* fix(team_endpoints.py): fix response type

* test(test_completion.py): handle predibase error

* test(test_proxy_server.py): fix test

* fix(o1_transformation.py): fix max_completion_token mapping

* test(test_image_generation.py): mark flaky test
2024-09-14 10:02:55 -07:00

89 lines
2.6 KiB
Python

## This is a template base class to be used for adding new LLM providers via API calls
from typing import Any, Optional, Union
import httpx
import requests
import litellm
class BaseLLM:
_client_session: Optional[httpx.Client] = None
def process_response(
self,
model: str,
response: Union[requests.Response, httpx.Response],
model_response: litellm.utils.ModelResponse,
stream: bool,
logging_obj: Any,
optional_params: dict,
api_key: str,
data: Union[dict, str],
messages: list,
print_verbose,
encoding,
) -> Union[litellm.utils.ModelResponse, litellm.utils.CustomStreamWrapper]:
"""
Helper function to process the response across sync + async completion calls
"""
return model_response
def process_text_completion_response(
self,
model: str,
response: Union[requests.Response, httpx.Response],
model_response: litellm.utils.TextCompletionResponse,
stream: bool,
logging_obj: Any,
optional_params: dict,
api_key: str,
data: Union[dict, str],
messages: list,
print_verbose,
encoding,
) -> Union[litellm.utils.TextCompletionResponse, litellm.utils.CustomStreamWrapper]:
"""
Helper function to process the response across sync + async completion calls
"""
return model_response
def create_client_session(self):
if litellm.client_session:
_client_session = litellm.client_session
else:
_client_session = httpx.Client()
return _client_session
def create_aclient_session(self):
if litellm.aclient_session:
_aclient_session = litellm.aclient_session
else:
_aclient_session = httpx.AsyncClient()
return _aclient_session
def __exit__(self):
if hasattr(self, "_client_session") and self._client_session is not None:
self._client_session.close()
async def __aexit__(self, exc_type, exc_val, exc_tb):
if hasattr(self, "_aclient_session"):
await self._aclient_session.aclose() # type: ignore
def validate_environment(
self, *args, **kwargs
) -> Optional[Any]: # set up the environment required to run the model
return None
def completion(
self, *args, **kwargs
) -> Any: # logic for parsing in - calling - parsing out model completion calls
return None
def embedding(
self, *args, **kwargs
) -> Any: # logic for parsing in - calling - parsing out model embedding calls
return None