litellm-mirror/litellm/proxy/proxy_cli.py

224 lines
10 KiB
Python

import click
import subprocess, traceback, json
import os, sys
import random, appdirs
from datetime import datetime
from dotenv import load_dotenv
import operator
config_filename = "litellm.secrets.toml"
# Using appdirs to determine user-specific config path
config_dir = appdirs.user_config_dir("litellm")
user_config_path = os.path.join(config_dir, config_filename)
load_dotenv()
from importlib import resources
import shutil
telemetry = None
def run_ollama_serve():
command = ['ollama', 'serve']
with open(os.devnull, 'w') as devnull:
process = subprocess.Popen(command, stdout=devnull, stderr=devnull)
def open_config(file_path=None):
# Create the .env file if it doesn't exist
if file_path:
# Ensure the user-specific directory exists
os.makedirs(config_dir, exist_ok=True)
# Copying the file using shutil.copy
try:
shutil.copy(file_path, user_config_path)
with open(file_path) as f:
print(f"Source file: {file_path}")
print(f.read())
with open(user_config_path) as f:
print(f"Dest file: {user_config_path}")
print(f.read())
print("\033[1;32mDone successfully\033[0m")
except Exception as e:
print(f"Failed to copy {file_path}: {e}")
else:
if os.path.exists(user_config_path):
if os.path.getsize(user_config_path) == 0:
print(f"{user_config_path} exists but is empty")
print(f"To create a config (save keys, modify model prompt), copy the template located here: https://docs.litellm.ai/docs/proxy_server")
else:
with open(user_config_path) as f:
print(f"Saved Config file: {user_config_path}")
print(f.read())
else:
print(f"{user_config_path} hasn't been created yet.")
print(f"To create a config (save keys, modify model prompt), copy the template located here: https://docs.litellm.ai/docs/proxy_server")
print(f"LiteLLM: config location - {user_config_path}")
def clone_subfolder(repo_url, subfolder, destination):
# Clone the full repo
repo_name = repo_url.split('/')[-1]
repo_master = os.path.join(destination, "repo_master")
subprocess.run(['git', 'clone', repo_url, repo_master])
# Move into the subfolder
subfolder_path = os.path.join(repo_master, subfolder)
# Copy subfolder to destination
for file_name in os.listdir(subfolder_path):
source = os.path.join(subfolder_path, file_name)
if os.path.isfile(source):
shutil.copy(source, destination)
else:
dest_path = os.path.join(destination, file_name)
shutil.copytree(source, dest_path)
# Remove cloned repo folder
subprocess.run(['rm', '-rf', os.path.join(destination, "repo_master")])
feature_telemetry(feature="create-proxy")
def is_port_in_use(port):
import socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0
@click.command()
@click.option('--host', default='0.0.0.0', help='Host for the server to listen on.')
@click.option('--port', default=8000, help='Port to bind the server to.')
@click.option('--api_base', default=None, help='API base URL.')
@click.option('--model', default=None, help='The model name to pass to litellm expects')
@click.option('--alias', default=None, help='The alias for the model - use this to give a litellm model name (e.g. "huggingface/codellama/CodeLlama-7b-Instruct-hf") a more user-friendly name ("codellama")')
@click.option('--add_key', default=None, help='The model name to pass to litellm expects')
@click.option('--headers', default=None, help='headers for the API call')
@click.option('--deploy', is_flag=True, type=bool, help='Get a deployed proxy endpoint - api.litellm.ai')
@click.option('--save', is_flag=True, type=bool, help='Save the model-specific config')
@click.option('--debug', default=False, is_flag=True, type=bool, help='To debug the input')
@click.option('--temperature', default=None, type=float, help='Set temperature for the model')
@click.option('--max_tokens', default=None, type=int, help='Set max tokens for the model')
@click.option('--drop_params', is_flag=True, help='Drop any unmapped params')
@click.option('--create_proxy', is_flag=True, help='Creates a local OpenAI-compatible server template')
@click.option('--add_function_to_prompt', is_flag=True, help='If function passed but unsupported, pass it as prompt')
@click.option('--config', '-c', is_flag=True, help='Configure Litellm')
@click.option('--file', '-f', help='Path to config file')
@click.option('--max_budget', default=None, type=float, help='Set max budget for API calls - works for hosted models like OpenAI, TogetherAI, Anthropic, etc.`')
@click.option('--telemetry', default=True, type=bool, help='Helps us know if people are using this feature. Turn this off by doing `--telemetry False`')
@click.option('--logs', flag_value=False, type=int, help='Gets the "n" most recent logs. By default gets most recent log.')
@click.option('--test', flag_value=True, help='proxy chat completions url to make a test request to')
@click.option('--local', is_flag=True, default=False, help='for local debugging')
@click.option('--cost', is_flag=True, default=False, help='for viewing cost logs')
def run_server(host, port, api_base, model, alias, add_key, headers, deploy, save, debug, temperature, max_tokens, drop_params, create_proxy, add_function_to_prompt, config, file, max_budget, telemetry, logs, test, local, cost):
global feature_telemetry
args = locals()
if local:
from proxy_server import app, initialize, deploy_proxy, print_cost_logs, usage_telemetry, add_keys_to_config
debug = True
else:
try:
from .proxy_server import app, initialize, deploy_proxy, print_cost_logs, usage_telemetry, add_keys_to_config
except ImportError as e:
from proxy_server import app, initialize, deploy_proxy, print_cost_logs, usage_telemetry, add_keys_to_config
feature_telemetry = usage_telemetry
if create_proxy == True:
repo_url = 'https://github.com/BerriAI/litellm'
subfolder = 'litellm/proxy'
destination = os.path.join(os.getcwd(), 'litellm-proxy')
clone_subfolder(repo_url, subfolder, destination)
return
if config:
if file:
open_config(file_path=file)
else:
open_config()
return
if logs is not None:
if logs == 0: # default to 1
logs = 1
try:
with open('api_log.json') as f:
data = json.load(f)
# convert keys to datetime objects
log_times = {datetime.strptime(k, "%Y%m%d%H%M%S%f"): v for k, v in data.items()}
# sort by timestamp
sorted_times = sorted(log_times.items(), key=operator.itemgetter(0), reverse=True)
# get n recent logs
recent_logs = {k.strftime("%Y%m%d%H%M%S%f"): v for k, v in sorted_times[:logs]}
print(json.dumps(recent_logs, indent=4))
except:
print("LiteLLM: No logs saved!")
return
if add_key:
key_name, key_value = add_key.split("=")
add_keys_to_config(key_name, key_value)
with open(user_config_path) as f:
print(f.read())
print("\033[1;32mDone successfully\033[0m")
return
if deploy == True:
print(f"\033[32mLiteLLM: Deploying your proxy to api.litellm.ai\033[0m\n")
print(f"\033[32mLiteLLM: Deploying proxy for model: {model}\033[0m\n")
url = deploy_proxy(model, api_base, debug, temperature, max_tokens, telemetry, deploy)
print(f"\033[32mLiteLLM: Deploy Successfull\033[0m\n")
print(f"\033[32mLiteLLM: Your deployed url: {url}\033[0m\n")
print(f"\033[32mLiteLLM: Test your URL using the following: \"litellm --test {url}\"\033[0m")
return
if model and "ollama" in model:
run_ollama_serve()
if cost == True:
print_cost_logs()
return
if test != False:
click.echo('LiteLLM: Making a test ChatCompletions request to your proxy')
import openai
if test == True: # flag value set
api_base = f"http://{host}:{port}"
else:
api_base = test
openai.api_base = api_base
openai.api_key = "temp-key"
print(openai.api_base)
response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, acknowledge that you got it"
}
])
click.echo(f'LiteLLM: response from proxy {response}')
click.echo(f'LiteLLM: response from proxy with streaming {response}')
response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, acknowledge that you got it"
}
],
stream=True,
)
for chunk in response:
click.echo(f'LiteLLM: streaming response from proxy {chunk}')
return
else:
if headers:
headers = json.loads(headers)
initialize(model=model, alias=alias, api_base=api_base, debug=debug, temperature=temperature, max_tokens=max_tokens, max_budget=max_budget, telemetry=telemetry, drop_params=drop_params, add_function_to_prompt=add_function_to_prompt, headers=headers, save=save)
try:
import uvicorn
except:
raise ImportError("Uvicorn needs to be imported. Run - `pip install uvicorn`")
print(f"\033[32mLiteLLM: Test your local endpoint with: \"litellm --test\" [In a new terminal tab]\033[0m\n")
print(f"\033[32mLiteLLM: View available endpoints for this server on: http://{host}:{port}\033[0m\n")
print(f"\033[32mLiteLLM: Deploy your proxy using the following: \"litellm --model claude-instant-1 --deploy\" Get an https://api.litellm.ai/chat/completions endpoint \033[0m\n")
if port == 8000 and is_port_in_use(port):
port = random.randint(1024, 49152)
uvicorn.run(app, host=host, port=port)
if __name__ == "__main__":
run_server()