litellm-mirror/litellm/llms/base_llm/base_utils.py
Krish Dholakia 08b124aeb6
Litellm dev 01 25 2025 p2 (#8003)
* fix(base_utils.py): supported nested json schema passed in for anthropic calls

* refactor(base_utils.py): refactor ref parsing to prevent infinite loop

* test(test_openai_endpoints.py): refactor anthropic test to use bedrock

* fix(langfuse_prompt_management.py): add unit test for sync langfuse calls

Resolves https://github.com/BerriAI/litellm/issues/7938#issuecomment-2613293757
2025-01-25 16:50:57 -08:00

109 lines
3.3 KiB
Python

import copy
from abc import ABC, abstractmethod
from typing import List, Optional, Type, Union
from openai.lib import _parsing, _pydantic
from pydantic import BaseModel
from litellm.types.utils import ModelInfoBase
class BaseLLMModelInfo(ABC):
@abstractmethod
def get_model_info(
self,
model: str,
existing_model_info: Optional[ModelInfoBase] = None,
) -> Optional[ModelInfoBase]:
pass
@abstractmethod
def get_models(self) -> List[str]:
pass
@staticmethod
@abstractmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
pass
@staticmethod
@abstractmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
pass
def _dict_to_response_format_helper(
response_format: dict, ref_template: Optional[str] = None
) -> dict:
if ref_template is not None and response_format.get("type") == "json_schema":
# Deep copy to avoid modifying original
modified_format = copy.deepcopy(response_format)
schema = modified_format["json_schema"]["schema"]
# Update all $ref values in the schema
def update_refs(schema):
stack = [(schema, [])]
visited = set()
while stack:
obj, path = stack.pop()
obj_id = id(obj)
if obj_id in visited:
continue
visited.add(obj_id)
if isinstance(obj, dict):
if "$ref" in obj:
ref_path = obj["$ref"]
model_name = ref_path.split("/")[-1]
obj["$ref"] = ref_template.format(model=model_name)
for k, v in obj.items():
if isinstance(v, (dict, list)):
stack.append((v, path + [k]))
elif isinstance(obj, list):
for i, item in enumerate(obj):
if isinstance(item, (dict, list)):
stack.append((item, path + [i]))
update_refs(schema)
return modified_format
return response_format
def type_to_response_format_param(
response_format: Optional[Union[Type[BaseModel], dict]],
ref_template: Optional[str] = None,
) -> Optional[dict]:
"""
Re-implementation of openai's 'type_to_response_format_param' function
Used for converting pydantic object to api schema.
"""
if response_format is None:
return None
if isinstance(response_format, dict):
return _dict_to_response_format_helper(response_format, ref_template)
# type checkers don't narrow the negation of a `TypeGuard` as it isn't
# a safe default behaviour but we know that at this point the `response_format`
# can only be a `type`
if not _parsing._completions.is_basemodel_type(response_format):
raise TypeError(f"Unsupported response_format type - {response_format}")
if ref_template is not None:
schema = response_format.model_json_schema(ref_template=ref_template)
else:
schema = _pydantic.to_strict_json_schema(response_format)
return {
"type": "json_schema",
"json_schema": {
"schema": schema,
"name": response_format.__name__,
"strict": True,
},
}