mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
221 lines
6.6 KiB
Python
221 lines
6.6 KiB
Python
# What this tests ?
|
|
## Tests /batches endpoints
|
|
import pytest
|
|
import asyncio
|
|
import aiohttp, openai
|
|
from openai import OpenAI, AsyncOpenAI
|
|
from typing import Optional, List, Union
|
|
from test_openai_files_endpoints import upload_file, delete_file
|
|
import os
|
|
import sys
|
|
import time
|
|
|
|
|
|
BASE_URL = "http://localhost:4000" # Replace with your actual base URL
|
|
API_KEY = "sk-1234" # Replace with your actual API key
|
|
|
|
from openai import OpenAI
|
|
|
|
client = OpenAI(base_url=BASE_URL, api_key=API_KEY)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_batches_operations():
|
|
_current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
input_file_path = os.path.join(_current_dir, "input.jsonl")
|
|
file_obj = client.files.create(
|
|
file=open(input_file_path, "rb"),
|
|
purpose="batch",
|
|
)
|
|
|
|
batch = client.batches.create(
|
|
input_file_id=file_obj.id,
|
|
endpoint="/v1/chat/completions",
|
|
completion_window="24h",
|
|
)
|
|
|
|
assert batch.id is not None
|
|
|
|
# Test get batch
|
|
_retrieved_batch = client.batches.retrieve(batch_id=batch.id)
|
|
print("response from get batch", _retrieved_batch)
|
|
|
|
assert _retrieved_batch.id == batch.id
|
|
assert _retrieved_batch.input_file_id == file_obj.id
|
|
|
|
# Test list batches
|
|
_list_batches = client.batches.list()
|
|
print("response from list batches", _list_batches)
|
|
|
|
assert _list_batches is not None
|
|
assert len(_list_batches.data) > 0
|
|
|
|
# Clean up
|
|
# Test cancel batch
|
|
_canceled_batch = client.batches.cancel(batch_id=batch.id)
|
|
print("response from cancel batch", _canceled_batch)
|
|
|
|
assert _canceled_batch.status is not None
|
|
assert (
|
|
_canceled_batch.status == "cancelling" or _canceled_batch.status == "cancelled"
|
|
)
|
|
|
|
# finally delete the file
|
|
_deleted_file = client.files.delete(file_id=file_obj.id)
|
|
print("response from delete file", _deleted_file)
|
|
|
|
assert _deleted_file.deleted is True
|
|
|
|
|
|
def create_batch_oai_sdk(filepath: str, custom_llm_provider: str) -> str:
|
|
batch_input_file = client.files.create(
|
|
file=open(filepath, "rb"),
|
|
purpose="batch",
|
|
extra_body={"custom_llm_provider": custom_llm_provider},
|
|
)
|
|
batch_input_file_id = batch_input_file.id
|
|
|
|
print("waiting for file to be processed......")
|
|
time.sleep(5)
|
|
rq = client.batches.create(
|
|
input_file_id=batch_input_file_id,
|
|
endpoint="/v1/chat/completions",
|
|
completion_window="24h",
|
|
metadata={
|
|
"description": filepath,
|
|
},
|
|
extra_body={"custom_llm_provider": custom_llm_provider},
|
|
)
|
|
|
|
print(f"Batch submitted. ID: {rq.id}")
|
|
return rq.id
|
|
|
|
|
|
def await_batch_completion(batch_id: str, custom_llm_provider: str):
|
|
max_tries = 3
|
|
tries = 0
|
|
|
|
while tries < max_tries:
|
|
batch = client.batches.retrieve(
|
|
batch_id, extra_body={"custom_llm_provider": custom_llm_provider}
|
|
)
|
|
if batch.status == "completed":
|
|
print(f"Batch {batch_id} completed.")
|
|
return batch.id
|
|
|
|
tries += 1
|
|
print(f"waiting for batch to complete... (attempt {tries}/{max_tries})")
|
|
time.sleep(10)
|
|
|
|
print(
|
|
f"Reached maximum number of attempts ({max_tries}). Batch may still be processing."
|
|
)
|
|
|
|
|
|
def write_content_to_file(
|
|
batch_id: str, output_path: str, custom_llm_provider: str
|
|
) -> str:
|
|
batch = client.batches.retrieve(
|
|
batch_id=batch_id, extra_body={"custom_llm_provider": custom_llm_provider}
|
|
)
|
|
content = client.files.content(
|
|
file_id=batch.output_file_id,
|
|
extra_body={"custom_llm_provider": custom_llm_provider},
|
|
)
|
|
print("content from files.content", content.content)
|
|
content.write_to_file(output_path)
|
|
|
|
|
|
import jsonlines
|
|
|
|
|
|
def read_jsonl(filepath: str):
|
|
results = []
|
|
with jsonlines.open(filepath) as f:
|
|
for line in f:
|
|
results.append(line)
|
|
|
|
for item in results:
|
|
print(item)
|
|
custom_id = item["custom_id"]
|
|
print(custom_id)
|
|
|
|
|
|
def get_any_completed_batch_id_azure():
|
|
print("AZURE getting any completed batch id")
|
|
list_of_batches = client.batches.list(extra_body={"custom_llm_provider": "azure"})
|
|
print("list of batches", list_of_batches)
|
|
for batch in list_of_batches:
|
|
if batch.status == "completed":
|
|
return batch.id
|
|
return None
|
|
|
|
|
|
@pytest.mark.parametrize("custom_llm_provider", ["azure", "openai"])
|
|
def test_e2e_batches_files(custom_llm_provider):
|
|
"""
|
|
[PROD Test] Ensures OpenAI Batches + files work with OpenAI SDK
|
|
"""
|
|
input_path = (
|
|
"input.jsonl" if custom_llm_provider == "openai" else "input_azure.jsonl"
|
|
)
|
|
output_path = "out.jsonl" if custom_llm_provider == "openai" else "out_azure.jsonl"
|
|
|
|
_current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
input_file_path = os.path.join(_current_dir, input_path)
|
|
output_file_path = os.path.join(_current_dir, output_path)
|
|
print("running e2e batches files with custom_llm_provider=", custom_llm_provider)
|
|
batch_id = create_batch_oai_sdk(
|
|
filepath=input_file_path, custom_llm_provider=custom_llm_provider
|
|
)
|
|
|
|
if custom_llm_provider == "azure":
|
|
# azure takes very long to complete a batch
|
|
return
|
|
else:
|
|
response_batch_id = await_batch_completion(
|
|
batch_id=batch_id, custom_llm_provider=custom_llm_provider
|
|
)
|
|
if response_batch_id is None:
|
|
return
|
|
|
|
write_content_to_file(
|
|
batch_id=batch_id,
|
|
output_path=output_file_path,
|
|
custom_llm_provider=custom_llm_provider,
|
|
)
|
|
read_jsonl(output_file_path)
|
|
|
|
|
|
@pytest.mark.skip(reason="Local only test to verify if things work well")
|
|
def test_vertex_batches_endpoint():
|
|
"""
|
|
Test VertexAI Batches Endpoint
|
|
"""
|
|
import os
|
|
|
|
oai_client = OpenAI(api_key=API_KEY, base_url=BASE_URL)
|
|
file_name = "local_testing/vertex_batch_completions.jsonl"
|
|
_current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
file_path = os.path.join(_current_dir, file_name)
|
|
file_obj = oai_client.files.create(
|
|
file=open(file_path, "rb"),
|
|
purpose="batch",
|
|
extra_body={"custom_llm_provider": "vertex_ai"},
|
|
)
|
|
print("Response from creating file=", file_obj)
|
|
|
|
batch_input_file_id = file_obj.id
|
|
assert (
|
|
batch_input_file_id is not None
|
|
), f"Failed to create file, expected a non null file_id but got {batch_input_file_id}"
|
|
|
|
create_batch_response = oai_client.batches.create(
|
|
completion_window="24h",
|
|
endpoint="/v1/chat/completions",
|
|
input_file_id=batch_input_file_id,
|
|
extra_body={"custom_llm_provider": "vertex_ai"},
|
|
metadata={"key1": "value1", "key2": "value2"},
|
|
)
|
|
print("response from create batch", create_batch_response)
|
|
pass
|