mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
370 lines
14 KiB
Python
370 lines
14 KiB
Python
# What is this?
|
|
## Log success + failure events to Braintrust
|
|
|
|
import copy
|
|
import json
|
|
import os
|
|
import threading
|
|
import traceback
|
|
import uuid
|
|
from datetime import datetime
|
|
from typing import Literal, Optional
|
|
|
|
import dotenv
|
|
import httpx
|
|
from pydantic import BaseModel
|
|
|
|
import litellm
|
|
from litellm import verbose_logger
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
get_async_httpx_client,
|
|
httpxSpecialProvider,
|
|
)
|
|
from litellm.utils import get_formatted_prompt
|
|
|
|
global_braintrust_http_handler = get_async_httpx_client(
|
|
llm_provider=httpxSpecialProvider.LoggingCallback
|
|
)
|
|
global_braintrust_sync_http_handler = HTTPHandler()
|
|
API_BASE = "https://api.braintrustdata.com/v1"
|
|
|
|
|
|
def get_utc_datetime():
|
|
import datetime as dt
|
|
from datetime import datetime
|
|
|
|
if hasattr(dt, "UTC"):
|
|
return datetime.now(dt.UTC) # type: ignore
|
|
else:
|
|
return datetime.utcnow() # type: ignore
|
|
|
|
|
|
class BraintrustLogger(CustomLogger):
|
|
def __init__(
|
|
self, api_key: Optional[str] = None, api_base: Optional[str] = None
|
|
) -> None:
|
|
super().__init__()
|
|
self.validate_environment(api_key=api_key)
|
|
self.api_base = api_base or API_BASE
|
|
self.default_project_id = None
|
|
self.api_key: str = api_key or os.getenv("BRAINTRUST_API_KEY") # type: ignore
|
|
self.headers = {
|
|
"Authorization": "Bearer " + self.api_key,
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
def validate_environment(self, api_key: Optional[str]):
|
|
"""
|
|
Expects
|
|
BRAINTRUST_API_KEY
|
|
|
|
in the environment
|
|
"""
|
|
missing_keys = []
|
|
if api_key is None and os.getenv("BRAINTRUST_API_KEY", None) is None:
|
|
missing_keys.append("BRAINTRUST_API_KEY")
|
|
|
|
if len(missing_keys) > 0:
|
|
raise Exception("Missing keys={} in environment.".format(missing_keys))
|
|
|
|
@staticmethod
|
|
def add_metadata_from_header(litellm_params: dict, metadata: dict) -> dict:
|
|
"""
|
|
Adds metadata from proxy request headers to Langfuse logging if keys start with "langfuse_"
|
|
and overwrites litellm_params.metadata if already included.
|
|
|
|
For example if you want to append your trace to an existing `trace_id` via header, send
|
|
`headers: { ..., langfuse_existing_trace_id: your-existing-trace-id }` via proxy request.
|
|
"""
|
|
if litellm_params is None:
|
|
return metadata
|
|
|
|
if litellm_params.get("proxy_server_request") is None:
|
|
return metadata
|
|
|
|
if metadata is None:
|
|
metadata = {}
|
|
|
|
proxy_headers = (
|
|
litellm_params.get("proxy_server_request", {}).get("headers", {}) or {}
|
|
)
|
|
|
|
for metadata_param_key in proxy_headers:
|
|
if metadata_param_key.startswith("braintrust"):
|
|
trace_param_key = metadata_param_key.replace("braintrust", "", 1)
|
|
if trace_param_key in metadata:
|
|
verbose_logger.warning(
|
|
f"Overwriting Braintrust `{trace_param_key}` from request header"
|
|
)
|
|
else:
|
|
verbose_logger.debug(
|
|
f"Found Braintrust `{trace_param_key}` in request header"
|
|
)
|
|
metadata[trace_param_key] = proxy_headers.get(metadata_param_key)
|
|
|
|
return metadata
|
|
|
|
async def create_default_project_and_experiment(self):
|
|
project = await global_braintrust_http_handler.post(
|
|
f"{self.api_base}/project", headers=self.headers, json={"name": "litellm"}
|
|
)
|
|
|
|
project_dict = project.json()
|
|
|
|
self.default_project_id = project_dict["id"]
|
|
|
|
def create_sync_default_project_and_experiment(self):
|
|
project = global_braintrust_sync_http_handler.post(
|
|
f"{self.api_base}/project", headers=self.headers, json={"name": "litellm"}
|
|
)
|
|
|
|
project_dict = project.json()
|
|
|
|
self.default_project_id = project_dict["id"]
|
|
|
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
verbose_logger.debug("REACHES BRAINTRUST SUCCESS")
|
|
try:
|
|
litellm_call_id = kwargs.get("litellm_call_id")
|
|
project_id = kwargs.get("project_id", None)
|
|
if project_id is None:
|
|
if self.default_project_id is None:
|
|
self.create_sync_default_project_and_experiment()
|
|
project_id = self.default_project_id
|
|
|
|
prompt = {"messages": kwargs.get("messages")}
|
|
|
|
if response_obj is not None and (
|
|
kwargs.get("call_type", None) == "embedding"
|
|
or isinstance(response_obj, litellm.EmbeddingResponse)
|
|
):
|
|
input = prompt
|
|
output = None
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.ModelResponse
|
|
):
|
|
input = prompt
|
|
output = response_obj["choices"][0]["message"].json()
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.TextCompletionResponse
|
|
):
|
|
input = prompt
|
|
output = response_obj.choices[0].text
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.ImageResponse
|
|
):
|
|
input = prompt
|
|
output = response_obj["data"]
|
|
|
|
litellm_params = kwargs.get("litellm_params", {})
|
|
metadata = (
|
|
litellm_params.get("metadata", {}) or {}
|
|
) # if litellm_params['metadata'] == None
|
|
metadata = self.add_metadata_from_header(litellm_params, metadata)
|
|
clean_metadata = {}
|
|
try:
|
|
metadata = copy.deepcopy(
|
|
metadata
|
|
) # Avoid modifying the original metadata
|
|
except:
|
|
new_metadata = {}
|
|
for key, value in metadata.items():
|
|
if (
|
|
isinstance(value, list)
|
|
or isinstance(value, dict)
|
|
or isinstance(value, str)
|
|
or isinstance(value, int)
|
|
or isinstance(value, float)
|
|
):
|
|
new_metadata[key] = copy.deepcopy(value)
|
|
metadata = new_metadata
|
|
|
|
tags = []
|
|
if isinstance(metadata, dict):
|
|
for key, value in metadata.items():
|
|
|
|
# generate langfuse tags - Default Tags sent to Langfuse from LiteLLM Proxy
|
|
if (
|
|
litellm.langfuse_default_tags is not None
|
|
and isinstance(litellm.langfuse_default_tags, list)
|
|
and key in litellm.langfuse_default_tags
|
|
):
|
|
tags.append(f"{key}:{value}")
|
|
|
|
# clean litellm metadata before logging
|
|
if key in [
|
|
"headers",
|
|
"endpoint",
|
|
"caching_groups",
|
|
"previous_models",
|
|
]:
|
|
continue
|
|
else:
|
|
clean_metadata[key] = value
|
|
|
|
cost = kwargs.get("response_cost", None)
|
|
if cost is not None:
|
|
clean_metadata["litellm_response_cost"] = cost
|
|
|
|
metrics: Optional[dict] = None
|
|
if (
|
|
response_obj is not None
|
|
and hasattr(response_obj, "usage")
|
|
and isinstance(response_obj.usage, litellm.Usage)
|
|
):
|
|
generation_id = litellm.utils.get_logging_id(start_time, response_obj)
|
|
metrics = {
|
|
"prompt_tokens": response_obj.usage.prompt_tokens,
|
|
"completion_tokens": response_obj.usage.completion_tokens,
|
|
"total_tokens": response_obj.usage.total_tokens,
|
|
"total_cost": cost,
|
|
}
|
|
|
|
request_data = {
|
|
"id": litellm_call_id,
|
|
"input": prompt,
|
|
"output": output,
|
|
"metadata": clean_metadata,
|
|
"tags": tags,
|
|
}
|
|
if metrics is not None:
|
|
request_data["metrics"] = metrics
|
|
|
|
try:
|
|
global_braintrust_sync_http_handler.post(
|
|
url=f"{self.api_base}/project_logs/{project_id}/insert",
|
|
json={"events": [request_data]},
|
|
headers=self.headers,
|
|
)
|
|
except httpx.HTTPStatusError as e:
|
|
raise Exception(e.response.text)
|
|
except Exception as e:
|
|
raise e # don't use verbose_logger.exception, if exception is raised
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
verbose_logger.debug("REACHES BRAINTRUST SUCCESS")
|
|
try:
|
|
litellm_call_id = kwargs.get("litellm_call_id")
|
|
project_id = kwargs.get("project_id", None)
|
|
if project_id is None:
|
|
if self.default_project_id is None:
|
|
await self.create_default_project_and_experiment()
|
|
project_id = self.default_project_id
|
|
|
|
prompt = {"messages": kwargs.get("messages")}
|
|
|
|
if response_obj is not None and (
|
|
kwargs.get("call_type", None) == "embedding"
|
|
or isinstance(response_obj, litellm.EmbeddingResponse)
|
|
):
|
|
input = prompt
|
|
output = None
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.ModelResponse
|
|
):
|
|
input = prompt
|
|
output = response_obj["choices"][0]["message"].json()
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.TextCompletionResponse
|
|
):
|
|
input = prompt
|
|
output = response_obj.choices[0].text
|
|
elif response_obj is not None and isinstance(
|
|
response_obj, litellm.ImageResponse
|
|
):
|
|
input = prompt
|
|
output = response_obj["data"]
|
|
|
|
litellm_params = kwargs.get("litellm_params", {})
|
|
metadata = (
|
|
litellm_params.get("metadata", {}) or {}
|
|
) # if litellm_params['metadata'] == None
|
|
metadata = self.add_metadata_from_header(litellm_params, metadata)
|
|
clean_metadata = {}
|
|
new_metadata = {}
|
|
for key, value in metadata.items():
|
|
if (
|
|
isinstance(value, list)
|
|
or isinstance(value, str)
|
|
or isinstance(value, int)
|
|
or isinstance(value, float)
|
|
):
|
|
new_metadata[key] = value
|
|
elif isinstance(value, BaseModel):
|
|
new_metadata[key] = value.model_dump_json()
|
|
elif isinstance(value, dict):
|
|
for k, v in value.items():
|
|
if isinstance(v, datetime):
|
|
value[k] = v.isoformat()
|
|
new_metadata[key] = value
|
|
|
|
metadata = new_metadata
|
|
|
|
tags = []
|
|
if isinstance(metadata, dict):
|
|
for key, value in metadata.items():
|
|
|
|
# generate langfuse tags - Default Tags sent to Langfuse from LiteLLM Proxy
|
|
if (
|
|
litellm.langfuse_default_tags is not None
|
|
and isinstance(litellm.langfuse_default_tags, list)
|
|
and key in litellm.langfuse_default_tags
|
|
):
|
|
tags.append(f"{key}:{value}")
|
|
|
|
# clean litellm metadata before logging
|
|
if key in [
|
|
"headers",
|
|
"endpoint",
|
|
"caching_groups",
|
|
"previous_models",
|
|
]:
|
|
continue
|
|
else:
|
|
clean_metadata[key] = value
|
|
|
|
cost = kwargs.get("response_cost", None)
|
|
if cost is not None:
|
|
clean_metadata["litellm_response_cost"] = cost
|
|
|
|
metrics: Optional[dict] = None
|
|
if (
|
|
response_obj is not None
|
|
and hasattr(response_obj, "usage")
|
|
and isinstance(response_obj.usage, litellm.Usage)
|
|
):
|
|
generation_id = litellm.utils.get_logging_id(start_time, response_obj)
|
|
metrics = {
|
|
"prompt_tokens": response_obj.usage.prompt_tokens,
|
|
"completion_tokens": response_obj.usage.completion_tokens,
|
|
"total_tokens": response_obj.usage.total_tokens,
|
|
"total_cost": cost,
|
|
}
|
|
|
|
request_data = {
|
|
"id": litellm_call_id,
|
|
"input": prompt,
|
|
"output": output,
|
|
"metadata": clean_metadata,
|
|
"tags": tags,
|
|
}
|
|
|
|
if metrics is not None:
|
|
request_data["metrics"] = metrics
|
|
|
|
try:
|
|
await global_braintrust_http_handler.post(
|
|
url=f"{self.api_base}/project_logs/{project_id}/insert",
|
|
json={"events": [request_data]},
|
|
headers=self.headers,
|
|
)
|
|
except httpx.HTTPStatusError as e:
|
|
raise Exception(e.response.text)
|
|
except Exception as e:
|
|
raise e # don't use verbose_logger.exception, if exception is raised
|
|
|
|
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
return super().log_failure_event(kwargs, response_obj, start_time, end_time)
|