mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 11s
* fix(main.py): support passing max retries to azure/openai embedding integrations Fixes https://github.com/BerriAI/litellm/issues/7003 * feat(team_endpoints.py): allow updating team model aliases Closes https://github.com/BerriAI/litellm/issues/6956 * feat(router.py): allow specifying model id as fallback - skips any cooldown check Allows a default model to be checked if all models in cooldown s/o @micahjsmith * docs(reliability.md): add fallback to specific model to docs * fix(utils.py): new 'is_prompt_caching_valid_prompt' helper util Allows user to identify if messages/tools have prompt caching Related issue: https://github.com/BerriAI/litellm/issues/6784 * feat(router.py): store model id for prompt caching valid prompt Allows routing to that model id on subsequent requests * fix(router.py): only cache if prompt is valid prompt caching prompt prevents storing unnecessary items in cache * feat(router.py): support routing prompt caching enabled models to previous deployments Closes https://github.com/BerriAI/litellm/issues/6784 * test: fix linting errors * feat(databricks/): convert basemodel to dict and exclude none values allow passing pydantic message to databricks * fix(utils.py): ensure all chat completion messages are dict * (feat) Track `custom_llm_provider` in LiteLLMSpendLogs (#7081) * add custom_llm_provider to SpendLogsPayload * add custom_llm_provider to SpendLogs * add custom llm provider to SpendLogs payload * test_spend_logs_payload * Add MLflow to the side bar (#7031) Signed-off-by: B-Step62 <yuki.watanabe@databricks.com> * (bug fix) SpendLogs update DB catch all possible DB errors for retrying (#7082) * catch DB_CONNECTION_ERROR_TYPES * fix DB retry mechanism for SpendLog updates * use DB_CONNECTION_ERROR_TYPES in auth checks * fix exp back off for writing SpendLogs * use _raise_failed_update_spend_exception to ensure errors print as NON blocking * test_update_spend_logs_multiple_batches_with_failure * (Feat) Add StructuredOutputs support for Fireworks.AI (#7085) * fix model cost map fireworks ai "supports_response_schema": true, * fix supports_response_schema * fix map openai params fireworks ai * test_map_response_format * test_map_response_format * added deepinfra/Meta-Llama-3.1-405B-Instruct (#7084) * bump: version 1.53.9 → 1.54.0 * fix deepinfra * litellm db fixes LiteLLM_UserTable (#7089) * ci/cd queue new release * fix llama-3.3-70b-versatile * refactor - use consistent file naming convention `AI21/` -> `ai21` (#7090) * fix refactor - use consistent file naming convention * ci/cd run again * fix naming structure * fix use consistent naming (#7092) --------- Signed-off-by: B-Step62 <yuki.watanabe@databricks.com> Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: Yuki Watanabe <31463517+B-Step62@users.noreply.github.com> Co-authored-by: ali sayyah <ali.sayyah2@gmail.com>
193 lines
6.3 KiB
Python
193 lines
6.3 KiB
Python
"""
|
|
Wrapper around router cache. Meant to store model id when prompt caching supported prompt is called.
|
|
"""
|
|
|
|
import hashlib
|
|
import json
|
|
import time
|
|
from typing import TYPE_CHECKING, Any, List, Optional, Tuple, TypedDict
|
|
|
|
import litellm
|
|
from litellm import verbose_logger
|
|
from litellm.caching.caching import Cache, DualCache
|
|
from litellm.caching.in_memory_cache import InMemoryCache
|
|
from litellm.types.llms.openai import AllMessageValues, ChatCompletionToolParam
|
|
|
|
if TYPE_CHECKING:
|
|
from opentelemetry.trace import Span as _Span
|
|
|
|
from litellm.router import Router
|
|
|
|
litellm_router = Router
|
|
Span = _Span
|
|
else:
|
|
Span = Any
|
|
litellm_router = Any
|
|
|
|
|
|
class PromptCachingCacheValue(TypedDict):
|
|
model_id: str
|
|
|
|
|
|
class PromptCachingCache:
|
|
def __init__(self, cache: DualCache):
|
|
self.cache = cache
|
|
self.in_memory_cache = InMemoryCache()
|
|
|
|
@staticmethod
|
|
def serialize_object(obj: Any) -> Any:
|
|
"""Helper function to serialize Pydantic objects, dictionaries, or fallback to string."""
|
|
if hasattr(obj, "dict"):
|
|
# If the object is a Pydantic model, use its `dict()` method
|
|
return obj.dict()
|
|
elif isinstance(obj, dict):
|
|
# If the object is a dictionary, serialize it with sorted keys
|
|
return json.dumps(
|
|
obj, sort_keys=True, separators=(",", ":")
|
|
) # Standardize serialization
|
|
|
|
elif isinstance(obj, list):
|
|
# Serialize lists by ensuring each element is handled properly
|
|
return [PromptCachingCache.serialize_object(item) for item in obj]
|
|
elif isinstance(obj, (int, float, bool)):
|
|
return obj # Keep primitive types as-is
|
|
return str(obj)
|
|
|
|
@staticmethod
|
|
def get_prompt_caching_cache_key(
|
|
messages: Optional[List[AllMessageValues]],
|
|
tools: Optional[List[ChatCompletionToolParam]],
|
|
) -> Optional[str]:
|
|
if messages is None and tools is None:
|
|
return None
|
|
# Use serialize_object for consistent and stable serialization
|
|
data_to_hash = {}
|
|
if messages is not None:
|
|
serialized_messages = PromptCachingCache.serialize_object(messages)
|
|
data_to_hash["messages"] = serialized_messages
|
|
if tools is not None:
|
|
serialized_tools = PromptCachingCache.serialize_object(tools)
|
|
data_to_hash["tools"] = serialized_tools
|
|
|
|
# Combine serialized data into a single string
|
|
data_to_hash_str = json.dumps(
|
|
data_to_hash,
|
|
sort_keys=True,
|
|
separators=(",", ":"),
|
|
)
|
|
|
|
# Create a hash of the serialized data for a stable cache key
|
|
hashed_data = hashlib.sha256(data_to_hash_str.encode()).hexdigest()
|
|
return f"deployment:{hashed_data}:prompt_caching"
|
|
|
|
def add_model_id(
|
|
self,
|
|
model_id: str,
|
|
messages: Optional[List[AllMessageValues]],
|
|
tools: Optional[List[ChatCompletionToolParam]],
|
|
) -> None:
|
|
if messages is None and tools is None:
|
|
return None
|
|
|
|
cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
|
|
self.cache.set_cache(
|
|
cache_key, PromptCachingCacheValue(model_id=model_id), ttl=300
|
|
)
|
|
return None
|
|
|
|
async def async_add_model_id(
|
|
self,
|
|
model_id: str,
|
|
messages: Optional[List[AllMessageValues]],
|
|
tools: Optional[List[ChatCompletionToolParam]],
|
|
) -> None:
|
|
if messages is None and tools is None:
|
|
return None
|
|
|
|
cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
|
|
await self.cache.async_set_cache(
|
|
cache_key,
|
|
PromptCachingCacheValue(model_id=model_id),
|
|
ttl=300, # store for 5 minutes
|
|
)
|
|
return None
|
|
|
|
async def async_get_model_id(
|
|
self,
|
|
messages: Optional[List[AllMessageValues]],
|
|
tools: Optional[List[ChatCompletionToolParam]],
|
|
) -> Optional[PromptCachingCacheValue]:
|
|
"""
|
|
if messages is not none
|
|
- check full messages
|
|
- check messages[:-1]
|
|
- check messages[:-2]
|
|
- check messages[:-3]
|
|
|
|
use self.cache.async_batch_get_cache(keys=potential_cache_keys])
|
|
"""
|
|
if messages is None and tools is None:
|
|
return None
|
|
|
|
# Generate potential cache keys by slicing messages
|
|
|
|
potential_cache_keys = []
|
|
|
|
if messages is not None:
|
|
full_cache_key = PromptCachingCache.get_prompt_caching_cache_key(
|
|
messages, tools
|
|
)
|
|
potential_cache_keys.append(full_cache_key)
|
|
|
|
# Check progressively shorter message slices
|
|
for i in range(1, min(4, len(messages))):
|
|
partial_messages = messages[:-i]
|
|
partial_cache_key = PromptCachingCache.get_prompt_caching_cache_key(
|
|
partial_messages, tools
|
|
)
|
|
potential_cache_keys.append(partial_cache_key)
|
|
|
|
# Perform batch cache lookup
|
|
cache_results = await self.cache.async_batch_get_cache(
|
|
keys=potential_cache_keys
|
|
)
|
|
|
|
if cache_results is None:
|
|
return None
|
|
|
|
# Return the first non-None cache result
|
|
for result in cache_results:
|
|
if result is not None:
|
|
return result
|
|
|
|
return None
|
|
|
|
def get_model_id(
|
|
self,
|
|
messages: Optional[List[AllMessageValues]],
|
|
tools: Optional[List[ChatCompletionToolParam]],
|
|
) -> Optional[PromptCachingCacheValue]:
|
|
if messages is None and tools is None:
|
|
return None
|
|
|
|
cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
|
|
return self.cache.get_cache(cache_key)
|
|
|
|
async def async_get_prompt_caching_deployment(
|
|
self,
|
|
router: litellm_router,
|
|
messages: Optional[List[AllMessageValues]],
|
|
tools: Optional[List[ChatCompletionToolParam]],
|
|
) -> Optional[dict]:
|
|
model_id_dict = await self.async_get_model_id(
|
|
messages=messages,
|
|
tools=tools,
|
|
)
|
|
|
|
if model_id_dict is not None:
|
|
healthy_deployment_pydantic_obj = router.get_deployment(
|
|
model_id=model_id_dict["model_id"]
|
|
)
|
|
if healthy_deployment_pydantic_obj is not None:
|
|
return healthy_deployment_pydantic_obj.model_dump(exclude_none=True)
|
|
return None
|