litellm-mirror/litellm/proxy/vertex_ai_endpoints/vertex_endpoints.py

144 lines
4.3 KiB
Python

import ast
import asyncio
import traceback
from datetime import datetime, timedelta, timezone
from typing import List, Optional
import fastapi
import httpx
from fastapi import (
APIRouter,
Depends,
File,
Form,
Header,
HTTPException,
Request,
Response,
UploadFile,
status,
)
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.batches.main import FileObject
from litellm.fine_tuning.main import vertex_fine_tuning_apis_instance
from litellm.proxy._types import *
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.pass_through_endpoints.pass_through_endpoints import (
create_pass_through_route,
)
router = APIRouter()
default_vertex_config = None
def set_default_vertex_config(config):
global default_vertex_config
if config is None:
return
if not isinstance(config, dict):
raise ValueError("invalid config, vertex default config must be a dictionary")
if isinstance(config, dict):
for key, value in config.items():
if isinstance(value, str) and value.startswith("os.environ/"):
config[key] = litellm.get_secret(value)
default_vertex_config = config
def exception_handler(e: Exception):
verbose_proxy_logger.error(
"litellm.proxy.proxy_server.v1/projects/tuningJobs(): Exception occurred - {}".format(
str(e)
)
)
verbose_proxy_logger.debug(traceback.format_exc())
if isinstance(e, HTTPException):
return ProxyException(
message=getattr(e, "message", str(e.detail)),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
)
else:
error_msg = f"{str(e)}"
return ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
@router.api_route(
"/vertex-ai/{endpoint:path}", methods=["GET", "POST", "PUT", "DELETE"]
)
async def vertex_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
encoded_endpoint = httpx.URL(endpoint).path
from litellm.fine_tuning.main import vertex_fine_tuning_apis_instance
if default_vertex_config is None:
raise ValueError(
"Vertex credentials not added on litellm proxy, please add `default_vertex_config` on your config.yaml"
)
vertex_project = default_vertex_config.get("vertex_project", None)
vertex_location = default_vertex_config.get("vertex_location", None)
vertex_credentials = default_vertex_config.get("vertex_credentials", None)
base_target_url = f"https://{vertex_location}-aiplatform.googleapis.com/"
auth_header, _ = vertex_fine_tuning_apis_instance._get_token_and_url(
model="",
gemini_api_key=None,
vertex_credentials=vertex_credentials,
vertex_project=vertex_project,
vertex_location=vertex_location,
stream=False,
custom_llm_provider="vertex_ai_beta",
api_base="",
)
headers = {
"Authorization": f"Bearer {auth_header}",
}
request_route = encoded_endpoint
verbose_proxy_logger.debug("request_route %s", request_route)
# Ensure endpoint starts with '/' for proper URL construction
if not encoded_endpoint.startswith("/"):
encoded_endpoint = "/" + encoded_endpoint
# Construct the full target URL using httpx
base_url = httpx.URL(base_target_url)
updated_url = base_url.copy_with(path=encoded_endpoint)
verbose_proxy_logger.debug("updated url %s", updated_url)
## check for streaming
is_streaming_request = False
if "stream" in str(updated_url):
is_streaming_request = True
## CREATE PASS-THROUGH
endpoint_func = create_pass_through_route(
endpoint=endpoint,
target=str(updated_url),
custom_headers=headers,
) # dynamically construct pass-through endpoint based on incoming path
received_value = await endpoint_func(
request,
fastapi_response,
user_api_key_dict,
stream=is_streaming_request,
)
return received_value