mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* refactor: introduce new transformation config for gpt-4o-transcribe models * refactor: expose new transformation configs for audio transcription * ci: fix config yml * feat(openai/transcriptions): support provider config transformation on openai audio transcriptions allows gpt-4o and whisper audio transformation to work as expected * refactor: migrate fireworks ai + deepgram to new transform request pattern * feat(openai/): working support for gpt-4o-audio-transcribe * build(model_prices_and_context_window.json): add gpt-4o-transcribe to model cost map * build(model_prices_and_context_window.json): specify what endpoints are supported for `/audio/transcriptions` * fix(get_supported_openai_params.py): fix return * refactor(deepgram/): migrate unit test to deepgram handler * refactor: cleanup unused imports * fix(get_supported_openai_params.py): fix linting error * test: update test
2086 lines
67 KiB
Python
2086 lines
67 KiB
Python
import copy
|
|
import sys
|
|
import time
|
|
from datetime import datetime
|
|
from unittest import mock
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
from litellm.types.utils import StandardCallbackDynamicParams
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system-path
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, headers
|
|
from litellm.litellm_core_utils.duration_parser import duration_in_seconds
|
|
from litellm.litellm_core_utils.duration_parser import (
|
|
get_last_day_of_month,
|
|
_extract_from_regex,
|
|
)
|
|
from litellm.utils import (
|
|
check_valid_key,
|
|
create_pretrained_tokenizer,
|
|
create_tokenizer,
|
|
function_to_dict,
|
|
get_llm_provider,
|
|
get_max_tokens,
|
|
get_supported_openai_params,
|
|
get_token_count,
|
|
get_valid_models,
|
|
token_counter,
|
|
trim_messages,
|
|
validate_environment,
|
|
)
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
|
|
# Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils'
|
|
|
|
|
|
# Test 1: Check trimming of normal message
|
|
def test_basic_trimming():
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "This is a long message that definitely exceeds the token limit.",
|
|
}
|
|
]
|
|
trimmed_messages = trim_messages(messages, model="claude-2", max_tokens=8)
|
|
print("trimmed messages")
|
|
print(trimmed_messages)
|
|
# print(get_token_count(messages=trimmed_messages, model="claude-2"))
|
|
assert (get_token_count(messages=trimmed_messages, model="claude-2")) <= 8
|
|
|
|
|
|
# test_basic_trimming()
|
|
|
|
|
|
def test_basic_trimming_no_max_tokens_specified():
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "This is a long message that is definitely under the token limit.",
|
|
}
|
|
]
|
|
trimmed_messages = trim_messages(messages, model="gpt-4")
|
|
print("trimmed messages for gpt-4")
|
|
print(trimmed_messages)
|
|
# print(get_token_count(messages=trimmed_messages, model="claude-2"))
|
|
assert (
|
|
get_token_count(messages=trimmed_messages, model="gpt-4")
|
|
) <= litellm.model_cost["gpt-4"]["max_tokens"]
|
|
|
|
|
|
# test_basic_trimming_no_max_tokens_specified()
|
|
|
|
|
|
def test_multiple_messages_trimming():
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "This is a long message that will exceed the token limit.",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "This is another long message that will also exceed the limit.",
|
|
},
|
|
]
|
|
trimmed_messages = trim_messages(
|
|
messages=messages, model="gpt-3.5-turbo", max_tokens=20
|
|
)
|
|
# print(get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo"))
|
|
assert (get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo")) <= 20
|
|
|
|
|
|
# test_multiple_messages_trimming()
|
|
|
|
|
|
def test_multiple_messages_no_trimming():
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "This is a long message that will exceed the token limit.",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "This is another long message that will also exceed the limit.",
|
|
},
|
|
]
|
|
trimmed_messages = trim_messages(
|
|
messages=messages, model="gpt-3.5-turbo", max_tokens=100
|
|
)
|
|
print("Trimmed messages")
|
|
print(trimmed_messages)
|
|
assert messages == trimmed_messages
|
|
|
|
|
|
# test_multiple_messages_no_trimming()
|
|
|
|
|
|
def test_large_trimming_multiple_messages():
|
|
messages = [
|
|
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
|
|
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
|
|
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
|
|
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
|
|
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
|
|
]
|
|
trimmed_messages = trim_messages(messages, max_tokens=20, model="gpt-4-0613")
|
|
print("trimmed messages")
|
|
print(trimmed_messages)
|
|
assert (get_token_count(messages=trimmed_messages, model="gpt-4-0613")) <= 20
|
|
|
|
|
|
# test_large_trimming()
|
|
|
|
|
|
def test_large_trimming_single_message():
|
|
messages = [
|
|
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."}
|
|
]
|
|
trimmed_messages = trim_messages(messages, max_tokens=5, model="gpt-4-0613")
|
|
assert (get_token_count(messages=trimmed_messages, model="gpt-4-0613")) <= 5
|
|
assert (get_token_count(messages=trimmed_messages, model="gpt-4-0613")) > 0
|
|
|
|
|
|
def test_trimming_with_system_message_within_max_tokens():
|
|
# This message is 33 tokens long
|
|
messages = [
|
|
{"role": "system", "content": "This is a short system message"},
|
|
{
|
|
"role": "user",
|
|
"content": "This is a medium normal message, let's say litellm is awesome.",
|
|
},
|
|
]
|
|
trimmed_messages = trim_messages(
|
|
messages, max_tokens=30, model="gpt-4-0613"
|
|
) # The system message should fit within the token limit
|
|
assert len(trimmed_messages) == 2
|
|
assert trimmed_messages[0]["content"] == "This is a short system message"
|
|
|
|
|
|
def test_trimming_with_system_message_exceeding_max_tokens():
|
|
# This message is 33 tokens long. The system message is 13 tokens long.
|
|
messages = [
|
|
{"role": "system", "content": "This is a short system message"},
|
|
{
|
|
"role": "user",
|
|
"content": "This is a medium normal message, let's say litellm is awesome.",
|
|
},
|
|
]
|
|
trimmed_messages = trim_messages(messages, max_tokens=12, model="gpt-4-0613")
|
|
assert len(trimmed_messages) == 1
|
|
|
|
|
|
def test_trimming_with_tool_calls():
|
|
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
|
|
},
|
|
Message(
|
|
content=None,
|
|
role="assistant",
|
|
tool_calls=[
|
|
ChatCompletionMessageToolCall(
|
|
function=Function(
|
|
arguments='{"location": "San Francisco, CA", "unit": "celsius"}',
|
|
name="get_current_weather",
|
|
),
|
|
id="call_G11shFcS024xEKjiAOSt6Tc9",
|
|
type="function",
|
|
),
|
|
ChatCompletionMessageToolCall(
|
|
function=Function(
|
|
arguments='{"location": "Tokyo, Japan", "unit": "celsius"}',
|
|
name="get_current_weather",
|
|
),
|
|
id="call_e0ss43Bg7H8Z9KGdMGWyZ9Mj",
|
|
type="function",
|
|
),
|
|
ChatCompletionMessageToolCall(
|
|
function=Function(
|
|
arguments='{"location": "Paris, France", "unit": "celsius"}',
|
|
name="get_current_weather",
|
|
),
|
|
id="call_nRjLXkWTJU2a4l9PZAf5as6g",
|
|
type="function",
|
|
),
|
|
],
|
|
function_call=None,
|
|
),
|
|
{
|
|
"tool_call_id": "call_G11shFcS024xEKjiAOSt6Tc9",
|
|
"role": "tool",
|
|
"name": "get_current_weather",
|
|
"content": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
|
|
},
|
|
{
|
|
"tool_call_id": "call_e0ss43Bg7H8Z9KGdMGWyZ9Mj",
|
|
"role": "tool",
|
|
"name": "get_current_weather",
|
|
"content": '{"location": "Tokyo", "temperature": "10", "unit": "celsius"}',
|
|
},
|
|
{
|
|
"tool_call_id": "call_nRjLXkWTJU2a4l9PZAf5as6g",
|
|
"role": "tool",
|
|
"name": "get_current_weather",
|
|
"content": '{"location": "Paris", "temperature": "22", "unit": "celsius"}',
|
|
},
|
|
]
|
|
result = trim_messages(messages=messages, max_tokens=1, return_response_tokens=True)
|
|
|
|
print(result)
|
|
|
|
assert len(result[0]) == 3 # final 3 messages are tool calls
|
|
|
|
|
|
def test_trimming_should_not_change_original_messages():
|
|
messages = [
|
|
{"role": "system", "content": "This is a short system message"},
|
|
{
|
|
"role": "user",
|
|
"content": "This is a medium normal message, let's say litellm is awesome.",
|
|
},
|
|
]
|
|
messages_copy = copy.deepcopy(messages)
|
|
trimmed_messages = trim_messages(messages, max_tokens=12, model="gpt-4-0613")
|
|
assert messages == messages_copy
|
|
|
|
|
|
@pytest.mark.parametrize("model", ["gpt-4-0125-preview", "claude-3-opus-20240229"])
|
|
def test_trimming_with_model_cost_max_input_tokens(model):
|
|
messages = [
|
|
{"role": "system", "content": "This is a normal system message"},
|
|
{
|
|
"role": "user",
|
|
"content": "This is a sentence" * 100000,
|
|
},
|
|
]
|
|
trimmed_messages = trim_messages(messages, model=model)
|
|
assert (
|
|
get_token_count(trimmed_messages, model=model)
|
|
< litellm.model_cost[model]["max_input_tokens"]
|
|
)
|
|
|
|
|
|
def test_aget_valid_models():
|
|
old_environ = os.environ
|
|
os.environ = {"OPENAI_API_KEY": "temp"} # mock set only openai key in environ
|
|
|
|
valid_models = get_valid_models()
|
|
print(valid_models)
|
|
|
|
# list of openai supported llms on litellm
|
|
expected_models = (
|
|
litellm.open_ai_chat_completion_models + litellm.open_ai_text_completion_models
|
|
)
|
|
|
|
assert valid_models == expected_models
|
|
|
|
# reset replicate env key
|
|
os.environ = old_environ
|
|
|
|
# GEMINI
|
|
expected_models = litellm.gemini_models
|
|
old_environ = os.environ
|
|
os.environ = {"GEMINI_API_KEY": "temp"} # mock set only openai key in environ
|
|
|
|
valid_models = get_valid_models()
|
|
|
|
print(valid_models)
|
|
assert valid_models == expected_models
|
|
|
|
# reset replicate env key
|
|
os.environ = old_environ
|
|
|
|
|
|
# test_get_valid_models()
|
|
|
|
|
|
def test_bad_key():
|
|
key = "bad-key"
|
|
response = check_valid_key(model="gpt-3.5-turbo", api_key=key)
|
|
print(response, key)
|
|
assert response == False
|
|
|
|
|
|
def test_good_key():
|
|
key = os.environ["OPENAI_API_KEY"]
|
|
response = check_valid_key(model="gpt-3.5-turbo", api_key=key)
|
|
assert response == True
|
|
|
|
|
|
# test validate environment
|
|
|
|
|
|
def test_validate_environment_empty_model():
|
|
api_key = validate_environment()
|
|
if api_key is None:
|
|
raise Exception()
|
|
|
|
|
|
def test_validate_environment_api_key():
|
|
response_obj = validate_environment(model="gpt-3.5-turbo", api_key="sk-my-test-key")
|
|
assert (
|
|
response_obj["keys_in_environment"] is True
|
|
), f"Missing keys={response_obj['missing_keys']}"
|
|
|
|
|
|
def test_validate_environment_api_base_dynamic():
|
|
for provider in ["ollama", "ollama_chat"]:
|
|
kv = validate_environment(provider + "/mistral", api_base="https://example.com")
|
|
assert kv["keys_in_environment"]
|
|
assert kv["missing_keys"] == []
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"OLLAMA_API_BASE": "foo"}, clear=True)
|
|
def test_validate_environment_ollama():
|
|
for provider in ["ollama", "ollama_chat"]:
|
|
kv = validate_environment(provider + "/mistral")
|
|
assert kv["keys_in_environment"]
|
|
assert kv["missing_keys"] == []
|
|
|
|
|
|
@mock.patch.dict(os.environ, {}, clear=True)
|
|
def test_validate_environment_ollama_failed():
|
|
for provider in ["ollama", "ollama_chat"]:
|
|
kv = validate_environment(provider + "/mistral")
|
|
assert not kv["keys_in_environment"]
|
|
assert kv["missing_keys"] == ["OLLAMA_API_BASE"]
|
|
|
|
|
|
def test_function_to_dict():
|
|
print("testing function to dict for get current weather")
|
|
|
|
def get_current_weather(location: str, unit: str):
|
|
"""Get the current weather in a given location
|
|
|
|
Parameters
|
|
----------
|
|
location : str
|
|
The city and state, e.g. San Francisco, CA
|
|
unit : {'celsius', 'fahrenheit'}
|
|
Temperature unit
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
a sentence indicating the weather
|
|
"""
|
|
if location == "Boston, MA":
|
|
return "The weather is 12F"
|
|
|
|
function_json = litellm.utils.function_to_dict(get_current_weather)
|
|
print(function_json)
|
|
|
|
expected_output = {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"description": "Temperature unit",
|
|
"enum": "['fahrenheit', 'celsius']",
|
|
},
|
|
},
|
|
"required": ["location", "unit"],
|
|
},
|
|
}
|
|
print(expected_output)
|
|
|
|
assert function_json["name"] == expected_output["name"]
|
|
assert function_json["description"] == expected_output["description"]
|
|
assert function_json["parameters"]["type"] == expected_output["parameters"]["type"]
|
|
assert (
|
|
function_json["parameters"]["properties"]["location"]
|
|
== expected_output["parameters"]["properties"]["location"]
|
|
)
|
|
|
|
# the enum can change it can be - which is why we don't assert on unit
|
|
# {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"}
|
|
# {'type': 'string', 'description': 'Temperature unit', 'enum': "['celsius', 'fahrenheit']"}
|
|
|
|
assert (
|
|
function_json["parameters"]["required"]
|
|
== expected_output["parameters"]["required"]
|
|
)
|
|
|
|
print("passed")
|
|
|
|
|
|
# test_function_to_dict()
|
|
|
|
|
|
def test_token_counter():
|
|
try:
|
|
messages = [{"role": "user", "content": "hi how are you what time is it"}]
|
|
tokens = token_counter(model="gpt-3.5-turbo", messages=messages)
|
|
print("gpt-35-turbo")
|
|
print(tokens)
|
|
assert tokens > 0
|
|
|
|
tokens = token_counter(model="claude-2", messages=messages)
|
|
print("claude-2")
|
|
print(tokens)
|
|
assert tokens > 0
|
|
|
|
tokens = token_counter(model="gemini/chat-bison", messages=messages)
|
|
print("gemini/chat-bison")
|
|
print(tokens)
|
|
assert tokens > 0
|
|
|
|
tokens = token_counter(model="ollama/llama2", messages=messages)
|
|
print("ollama/llama2")
|
|
print(tokens)
|
|
assert tokens > 0
|
|
|
|
tokens = token_counter(model="anthropic.claude-instant-v1", messages=messages)
|
|
print("anthropic.claude-instant-v1")
|
|
print(tokens)
|
|
assert tokens > 0
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_token_counter()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expected_bool",
|
|
[
|
|
("gpt-3.5-turbo", True),
|
|
("azure/gpt-4-1106-preview", True),
|
|
("groq/gemma-7b-it", True),
|
|
("anthropic.claude-instant-v1", False),
|
|
("gemini/gemini-1.5-flash", True),
|
|
],
|
|
)
|
|
def test_supports_function_calling(model, expected_bool):
|
|
try:
|
|
assert litellm.supports_function_calling(model=model) == expected_bool
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expected_bool",
|
|
[
|
|
("gpt-4o-mini-search-preview", True),
|
|
("openai/gpt-4o-mini-search-preview", True),
|
|
("gpt-4o-search-preview", True),
|
|
("openai/gpt-4o-search-preview", True),
|
|
("groq/deepseek-r1-distill-llama-70b", False),
|
|
("groq/llama-3.3-70b-versatile", False),
|
|
("codestral/codestral-latest", False),
|
|
],
|
|
)
|
|
def test_supports_web_search(model, expected_bool):
|
|
try:
|
|
assert litellm.supports_web_search(model=model) == expected_bool
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_get_max_token_unit_test():
|
|
"""
|
|
More complete testing in `test_completion_cost.py`
|
|
"""
|
|
model = "bedrock/anthropic.claude-3-haiku-20240307-v1:0"
|
|
|
|
max_tokens = get_max_tokens(
|
|
model
|
|
) # Returns a number instead of throwing an Exception
|
|
|
|
assert isinstance(max_tokens, int)
|
|
|
|
|
|
def test_get_supported_openai_params() -> None:
|
|
# Mapped provider
|
|
assert isinstance(get_supported_openai_params("gpt-4"), list)
|
|
|
|
# Unmapped provider
|
|
assert get_supported_openai_params("nonexistent") is None
|
|
|
|
|
|
def test_get_chat_completion_prompt():
|
|
"""
|
|
Unit test to ensure get_chat_completion_prompt updates messages in logging object.
|
|
"""
|
|
from litellm.litellm_core_utils.litellm_logging import Logging
|
|
|
|
litellm_logging_obj = Logging(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
stream=False,
|
|
call_type="acompletion",
|
|
litellm_call_id="1234",
|
|
start_time=datetime.now(),
|
|
function_id="1234",
|
|
)
|
|
|
|
updated_message = "hello world"
|
|
|
|
litellm_logging_obj.get_chat_completion_prompt(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": updated_message}],
|
|
non_default_params={},
|
|
prompt_id="1234",
|
|
prompt_variables=None,
|
|
)
|
|
|
|
assert litellm_logging_obj.messages == [
|
|
{"role": "user", "content": updated_message}
|
|
]
|
|
|
|
|
|
def test_redact_msgs_from_logs():
|
|
"""
|
|
Tests that turn_off_message_logging does not modify the response_obj
|
|
|
|
On the proxy some users were seeing the redaction impact client side responses
|
|
"""
|
|
from litellm.litellm_core_utils.litellm_logging import Logging
|
|
from litellm.litellm_core_utils.redact_messages import (
|
|
redact_message_input_output_from_logging,
|
|
)
|
|
|
|
litellm.turn_off_message_logging = True
|
|
|
|
response_obj = litellm.ModelResponse(
|
|
choices=[
|
|
{
|
|
"finish_reason": "stop",
|
|
"index": 0,
|
|
"message": {
|
|
"content": "I'm LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner.",
|
|
"role": "assistant",
|
|
},
|
|
}
|
|
]
|
|
)
|
|
|
|
litellm_logging_obj = Logging(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
stream=False,
|
|
call_type="acompletion",
|
|
litellm_call_id="1234",
|
|
start_time=datetime.now(),
|
|
function_id="1234",
|
|
)
|
|
|
|
_redacted_response_obj = redact_message_input_output_from_logging(
|
|
result=response_obj,
|
|
model_call_details=litellm_logging_obj.model_call_details,
|
|
)
|
|
|
|
# Assert the response_obj content is NOT modified
|
|
assert (
|
|
response_obj.choices[0].message.content
|
|
== "I'm LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner."
|
|
)
|
|
|
|
litellm.turn_off_message_logging = False
|
|
print("Test passed")
|
|
|
|
|
|
def test_redact_msgs_from_logs_with_dynamic_params():
|
|
"""
|
|
Tests redaction behavior based on standard_callback_dynamic_params setting:
|
|
In all tests litellm.turn_off_message_logging is True
|
|
|
|
|
|
1. When standard_callback_dynamic_params.turn_off_message_logging is False (or not set): No redaction should occur. User has opted out of redaction.
|
|
2. When standard_callback_dynamic_params.turn_off_message_logging is True: Redaction should occur. User has opted in to redaction.
|
|
3. standard_callback_dynamic_params.turn_off_message_logging not set, litellm.turn_off_message_logging is True: Redaction should occur.
|
|
"""
|
|
from litellm.litellm_core_utils.litellm_logging import Logging
|
|
from litellm.litellm_core_utils.redact_messages import (
|
|
redact_message_input_output_from_logging,
|
|
)
|
|
|
|
litellm.turn_off_message_logging = True
|
|
test_content = "I'm LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner."
|
|
response_obj = litellm.ModelResponse(
|
|
choices=[
|
|
{
|
|
"finish_reason": "stop",
|
|
"index": 0,
|
|
"message": {
|
|
"content": test_content,
|
|
"role": "assistant",
|
|
},
|
|
}
|
|
]
|
|
)
|
|
|
|
litellm_logging_obj = Logging(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
stream=False,
|
|
call_type="acompletion",
|
|
litellm_call_id="1234",
|
|
start_time=datetime.now(),
|
|
function_id="1234",
|
|
)
|
|
|
|
# Test Case 1: standard_callback_dynamic_params = False (or not set)
|
|
standard_callback_dynamic_params = StandardCallbackDynamicParams(
|
|
turn_off_message_logging=False
|
|
)
|
|
litellm_logging_obj.model_call_details["standard_callback_dynamic_params"] = (
|
|
standard_callback_dynamic_params
|
|
)
|
|
_redacted_response_obj = redact_message_input_output_from_logging(
|
|
result=response_obj,
|
|
model_call_details=litellm_logging_obj.model_call_details,
|
|
)
|
|
# Assert no redaction occurred
|
|
assert _redacted_response_obj.choices[0].message.content == test_content
|
|
|
|
# Test Case 2: standard_callback_dynamic_params = True
|
|
standard_callback_dynamic_params = StandardCallbackDynamicParams(
|
|
turn_off_message_logging=True
|
|
)
|
|
litellm_logging_obj.model_call_details["standard_callback_dynamic_params"] = (
|
|
standard_callback_dynamic_params
|
|
)
|
|
_redacted_response_obj = redact_message_input_output_from_logging(
|
|
result=response_obj,
|
|
model_call_details=litellm_logging_obj.model_call_details,
|
|
)
|
|
# Assert redaction occurred
|
|
assert _redacted_response_obj.choices[0].message.content == "redacted-by-litellm"
|
|
|
|
# Test Case 3: standard_callback_dynamic_params does not override litellm.turn_off_message_logging
|
|
# since litellm.turn_off_message_logging is True redaction should occur
|
|
standard_callback_dynamic_params = StandardCallbackDynamicParams()
|
|
litellm_logging_obj.model_call_details["standard_callback_dynamic_params"] = (
|
|
standard_callback_dynamic_params
|
|
)
|
|
_redacted_response_obj = redact_message_input_output_from_logging(
|
|
result=response_obj,
|
|
model_call_details=litellm_logging_obj.model_call_details,
|
|
)
|
|
# Assert no redaction occurred
|
|
assert _redacted_response_obj.choices[0].message.content == "redacted-by-litellm"
|
|
|
|
# Reset settings
|
|
litellm.turn_off_message_logging = False
|
|
print("Test passed")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"duration, unit",
|
|
[("7s", "s"), ("7m", "m"), ("7h", "h"), ("7d", "d"), ("7mo", "mo")],
|
|
)
|
|
def test_extract_from_regex(duration, unit):
|
|
value, _unit = _extract_from_regex(duration=duration)
|
|
|
|
assert value == 7
|
|
assert _unit == unit
|
|
|
|
|
|
def test_duration_in_seconds():
|
|
"""
|
|
Test if duration int is correctly calculated for different str
|
|
"""
|
|
import time
|
|
|
|
now = time.time()
|
|
current_time = datetime.fromtimestamp(now)
|
|
|
|
if current_time.month == 12:
|
|
target_year = current_time.year + 1
|
|
target_month = 1
|
|
else:
|
|
target_year = current_time.year
|
|
target_month = current_time.month + 1
|
|
|
|
# Determine the day to set for next month
|
|
target_day = current_time.day
|
|
last_day_of_target_month = get_last_day_of_month(target_year, target_month)
|
|
|
|
if target_day > last_day_of_target_month:
|
|
target_day = last_day_of_target_month
|
|
|
|
next_month = datetime(
|
|
year=target_year,
|
|
month=target_month,
|
|
day=target_day,
|
|
hour=current_time.hour,
|
|
minute=current_time.minute,
|
|
second=current_time.second,
|
|
microsecond=current_time.microsecond,
|
|
)
|
|
|
|
# Calculate the duration until the first day of the next month
|
|
duration_until_next_month = next_month - current_time
|
|
expected_duration = int(duration_until_next_month.total_seconds())
|
|
|
|
value = duration_in_seconds(duration="1mo")
|
|
|
|
assert value - expected_duration < 2
|
|
|
|
|
|
def test_duration_in_seconds_basic():
|
|
assert duration_in_seconds(duration="3s") == 3
|
|
assert duration_in_seconds(duration="3m") == 180
|
|
assert duration_in_seconds(duration="3h") == 10800
|
|
assert duration_in_seconds(duration="3d") == 259200
|
|
assert duration_in_seconds(duration="3w") == 1814400
|
|
|
|
|
|
def test_get_llm_provider_ft_models():
|
|
"""
|
|
All ft prefixed models should map to OpenAI
|
|
gpt-3.5-turbo-0125 (recommended),
|
|
gpt-3.5-turbo-1106,
|
|
gpt-3.5-turbo,
|
|
gpt-4-0613 (experimental)
|
|
gpt-4o-2024-05-13.
|
|
babbage-002, davinci-002,
|
|
|
|
"""
|
|
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo-0125")
|
|
assert custom_llm_provider == "openai"
|
|
|
|
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo-1106")
|
|
assert custom_llm_provider == "openai"
|
|
|
|
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo")
|
|
assert custom_llm_provider == "openai"
|
|
|
|
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-4-0613")
|
|
assert custom_llm_provider == "openai"
|
|
|
|
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo")
|
|
assert custom_llm_provider == "openai"
|
|
|
|
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-4o-2024-05-13")
|
|
assert custom_llm_provider == "openai"
|
|
|
|
|
|
@pytest.mark.parametrize("langfuse_trace_id", [None, "my-unique-trace-id"])
|
|
@pytest.mark.parametrize(
|
|
"langfuse_existing_trace_id", [None, "my-unique-existing-trace-id"]
|
|
)
|
|
def test_logging_trace_id(langfuse_trace_id, langfuse_existing_trace_id):
|
|
"""
|
|
- Unit test for `_get_trace_id` function in Logging obj
|
|
"""
|
|
from litellm.litellm_core_utils.litellm_logging import Logging
|
|
|
|
litellm.success_callback = ["langfuse"]
|
|
litellm_call_id = "my-unique-call-id"
|
|
litellm_logging_obj = Logging(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
stream=False,
|
|
call_type="acompletion",
|
|
litellm_call_id=litellm_call_id,
|
|
start_time=datetime.now(),
|
|
function_id="1234",
|
|
)
|
|
|
|
metadata = {}
|
|
|
|
if langfuse_trace_id is not None:
|
|
metadata["trace_id"] = langfuse_trace_id
|
|
if langfuse_existing_trace_id is not None:
|
|
metadata["existing_trace_id"] = langfuse_existing_trace_id
|
|
|
|
litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey how's it going?"}],
|
|
mock_response="Hey!",
|
|
litellm_logging_obj=litellm_logging_obj,
|
|
metadata=metadata,
|
|
)
|
|
|
|
time.sleep(3)
|
|
assert litellm_logging_obj._get_trace_id(service_name="langfuse") is not None
|
|
|
|
## if existing_trace_id exists
|
|
if langfuse_existing_trace_id is not None:
|
|
assert (
|
|
litellm_logging_obj._get_trace_id(service_name="langfuse")
|
|
== langfuse_existing_trace_id
|
|
)
|
|
## if trace_id exists
|
|
elif langfuse_trace_id is not None:
|
|
assert (
|
|
litellm_logging_obj._get_trace_id(service_name="langfuse")
|
|
== langfuse_trace_id
|
|
)
|
|
## if existing_trace_id exists
|
|
else:
|
|
assert (
|
|
litellm_logging_obj._get_trace_id(service_name="langfuse")
|
|
== litellm_call_id
|
|
)
|
|
|
|
|
|
def test_convert_model_response_object():
|
|
"""
|
|
Unit test to ensure model response object correctly handles openrouter errors.
|
|
"""
|
|
args = {
|
|
"response_object": {
|
|
"id": None,
|
|
"choices": None,
|
|
"created": None,
|
|
"model": None,
|
|
"object": None,
|
|
"service_tier": None,
|
|
"system_fingerprint": None,
|
|
"usage": None,
|
|
"error": {
|
|
"message": '{"type":"error","error":{"type":"invalid_request_error","message":"Output blocked by content filtering policy"}}',
|
|
"code": 400,
|
|
},
|
|
},
|
|
"model_response_object": litellm.ModelResponse(
|
|
id="chatcmpl-b88ce43a-7bfc-437c-b8cc-e90d59372cfb",
|
|
choices=[
|
|
litellm.Choices(
|
|
finish_reason="stop",
|
|
index=0,
|
|
message=litellm.Message(content="default", role="assistant"),
|
|
)
|
|
],
|
|
created=1719376241,
|
|
model="openrouter/anthropic/claude-3.5-sonnet",
|
|
object="chat.completion",
|
|
system_fingerprint=None,
|
|
usage=litellm.Usage(),
|
|
),
|
|
"response_type": "completion",
|
|
"stream": False,
|
|
"start_time": None,
|
|
"end_time": None,
|
|
"hidden_params": None,
|
|
}
|
|
|
|
try:
|
|
litellm.convert_to_model_response_object(**args)
|
|
pytest.fail("Expected this to fail")
|
|
except Exception as e:
|
|
assert hasattr(e, "status_code")
|
|
assert e.status_code == 400
|
|
assert hasattr(e, "message")
|
|
assert (
|
|
e.message
|
|
== '{"type":"error","error":{"type":"invalid_request_error","message":"Output blocked by content filtering policy"}}'
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"content, expected_reasoning, expected_content",
|
|
[
|
|
(None, None, None),
|
|
(
|
|
"<think>I am thinking here</think>The sky is a canvas of blue",
|
|
"I am thinking here",
|
|
"The sky is a canvas of blue",
|
|
),
|
|
("I am a regular response", None, "I am a regular response"),
|
|
],
|
|
)
|
|
def test_parse_content_for_reasoning(content, expected_reasoning, expected_content):
|
|
assert litellm.utils._parse_content_for_reasoning(content) == (
|
|
expected_reasoning,
|
|
expected_content,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expected_bool",
|
|
[
|
|
("vertex_ai/gemini-1.5-pro", True),
|
|
("gemini/gemini-1.5-pro", True),
|
|
("predibase/llama3-8b-instruct", True),
|
|
("gpt-3.5-turbo", False),
|
|
("groq/llama3-70b-8192", True),
|
|
],
|
|
)
|
|
def test_supports_response_schema(model, expected_bool):
|
|
"""
|
|
Unit tests for 'supports_response_schema' helper function.
|
|
|
|
Should be true for gemini-1.5-pro on google ai studio / vertex ai AND predibase models
|
|
Should be false otherwise
|
|
"""
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
from litellm.utils import supports_response_schema
|
|
|
|
response = supports_response_schema(model=model, custom_llm_provider=None)
|
|
|
|
assert expected_bool == response
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expected_bool",
|
|
[
|
|
("gpt-3.5-turbo", True),
|
|
("gpt-4", True),
|
|
("command-nightly", False),
|
|
("gemini-pro", True),
|
|
],
|
|
)
|
|
def test_supports_function_calling_v2(model, expected_bool):
|
|
"""
|
|
Unit test for 'supports_function_calling' helper function.
|
|
"""
|
|
from litellm.utils import supports_function_calling
|
|
|
|
response = supports_function_calling(model=model, custom_llm_provider=None)
|
|
assert expected_bool == response
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expected_bool",
|
|
[
|
|
("gpt-4-vision-preview", True),
|
|
("gpt-3.5-turbo", False),
|
|
("claude-3-opus-20240229", True),
|
|
("gemini-pro-vision", True),
|
|
("command-nightly", False),
|
|
],
|
|
)
|
|
def test_supports_vision(model, expected_bool):
|
|
"""
|
|
Unit test for 'supports_vision' helper function.
|
|
"""
|
|
from litellm.utils import supports_vision
|
|
|
|
response = supports_vision(model=model, custom_llm_provider=None)
|
|
assert expected_bool == response
|
|
|
|
|
|
def test_usage_object_null_tokens():
|
|
"""
|
|
Unit test.
|
|
|
|
Asserts Usage obj always returns int.
|
|
|
|
Fixes https://github.com/BerriAI/litellm/issues/5096
|
|
"""
|
|
usage_obj = litellm.Usage(prompt_tokens=2, completion_tokens=None, total_tokens=2)
|
|
|
|
assert usage_obj.completion_tokens == 0
|
|
|
|
|
|
def test_is_base64_encoded():
|
|
import base64
|
|
|
|
import requests
|
|
|
|
litellm.set_verbose = True
|
|
url = "https://dummyimage.com/100/100/fff&text=Test+image"
|
|
response = requests.get(url)
|
|
file_data = response.content
|
|
|
|
encoded_file = base64.b64encode(file_data).decode("utf-8")
|
|
base64_image = f"data:image/png;base64,{encoded_file}"
|
|
|
|
from litellm.utils import is_base64_encoded
|
|
|
|
assert is_base64_encoded(s=base64_image) is True
|
|
|
|
|
|
@mock.patch("httpx.AsyncClient")
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{"SSL_VERIFY": "/certificate.pem", "SSL_CERTIFICATE": "/client.pem"},
|
|
clear=True,
|
|
)
|
|
def test_async_http_handler(mock_async_client):
|
|
import httpx
|
|
|
|
timeout = 120
|
|
event_hooks = {"request": [lambda r: r]}
|
|
concurrent_limit = 2
|
|
|
|
AsyncHTTPHandler(timeout, event_hooks, concurrent_limit)
|
|
|
|
mock_async_client.assert_called_with(
|
|
cert="/client.pem",
|
|
transport=None,
|
|
event_hooks=event_hooks,
|
|
headers=headers,
|
|
limits=httpx.Limits(
|
|
max_connections=concurrent_limit,
|
|
max_keepalive_connections=concurrent_limit,
|
|
),
|
|
timeout=timeout,
|
|
verify="/certificate.pem",
|
|
)
|
|
|
|
|
|
@mock.patch("httpx.AsyncClient")
|
|
@mock.patch.dict(os.environ, {}, clear=True)
|
|
def test_async_http_handler_force_ipv4(mock_async_client):
|
|
"""
|
|
Test AsyncHTTPHandler when litellm.force_ipv4 is True
|
|
|
|
This is prod test - we need to ensure that httpx always uses ipv4 when litellm.force_ipv4 is True
|
|
"""
|
|
import httpx
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
|
|
|
# Set force_ipv4 to True
|
|
litellm.force_ipv4 = True
|
|
|
|
try:
|
|
timeout = 120
|
|
event_hooks = {"request": [lambda r: r]}
|
|
concurrent_limit = 2
|
|
|
|
AsyncHTTPHandler(timeout, event_hooks, concurrent_limit)
|
|
|
|
# Get the call arguments
|
|
call_args = mock_async_client.call_args[1]
|
|
|
|
############# IMPORTANT ASSERTION #################
|
|
# Assert transport exists and is configured correctly for using ipv4
|
|
assert isinstance(call_args["transport"], httpx.AsyncHTTPTransport)
|
|
print(call_args["transport"])
|
|
assert call_args["transport"]._pool._local_address == "0.0.0.0"
|
|
####################################
|
|
|
|
# Assert other parameters match
|
|
assert call_args["event_hooks"] == event_hooks
|
|
assert call_args["headers"] == headers
|
|
assert isinstance(call_args["limits"], httpx.Limits)
|
|
assert call_args["limits"].max_connections == concurrent_limit
|
|
assert call_args["limits"].max_keepalive_connections == concurrent_limit
|
|
assert call_args["timeout"] == timeout
|
|
assert call_args["verify"] is True
|
|
assert call_args["cert"] is None
|
|
|
|
finally:
|
|
# Reset force_ipv4 to default
|
|
litellm.force_ipv4 = False
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expected_bool", [("gpt-3.5-turbo", False), ("gpt-4o-audio-preview", True)]
|
|
)
|
|
def test_supports_audio_input(model, expected_bool):
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
from litellm.utils import supports_audio_input, supports_audio_output
|
|
|
|
supports_pc = supports_audio_input(model=model)
|
|
|
|
assert supports_pc == expected_bool
|
|
|
|
|
|
def test_is_base64_encoded_2():
|
|
from litellm.utils import is_base64_encoded
|
|
|
|
assert (
|
|
is_base64_encoded(
|
|
s=""
|
|
)
|
|
is True
|
|
)
|
|
|
|
assert is_base64_encoded(s="Dog") is False
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"messages, expected_bool",
|
|
[
|
|
([{"role": "user", "content": "hi"}], True),
|
|
([{"role": "user", "content": [{"type": "text", "text": "hi"}]}], True),
|
|
(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "file",
|
|
"file": {
|
|
"file_id": "123",
|
|
"file_name": "test.txt",
|
|
"file_size": 100,
|
|
"file_type": "text/plain",
|
|
"file_url": "https://example.com/test.txt",
|
|
},
|
|
}
|
|
],
|
|
}
|
|
],
|
|
True,
|
|
),
|
|
(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image_url", "url": "https://example.com/image.png"}
|
|
],
|
|
}
|
|
],
|
|
True,
|
|
),
|
|
(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "hi"},
|
|
{
|
|
"type": "image",
|
|
"source": {
|
|
"type": "image",
|
|
"source": {
|
|
"type": "base64",
|
|
"media_type": "image/png",
|
|
"data": "1234",
|
|
},
|
|
},
|
|
},
|
|
],
|
|
}
|
|
],
|
|
False,
|
|
),
|
|
],
|
|
)
|
|
def test_validate_chat_completion_user_messages(messages, expected_bool):
|
|
from litellm.utils import validate_chat_completion_user_messages
|
|
|
|
if expected_bool:
|
|
## Valid message
|
|
validate_chat_completion_user_messages(messages=messages)
|
|
else:
|
|
## Invalid message
|
|
with pytest.raises(Exception):
|
|
validate_chat_completion_user_messages(messages=messages)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"tool_choice, expected_bool",
|
|
[
|
|
({"type": "function", "function": {"name": "get_current_weather"}}, True),
|
|
({"type": "tool", "name": "get_current_weather"}, False),
|
|
(None, True),
|
|
("auto", True),
|
|
("required", True),
|
|
],
|
|
)
|
|
def test_validate_chat_completion_tool_choice(tool_choice, expected_bool):
|
|
from litellm.utils import validate_chat_completion_tool_choice
|
|
|
|
if expected_bool:
|
|
validate_chat_completion_tool_choice(tool_choice=tool_choice)
|
|
else:
|
|
with pytest.raises(Exception):
|
|
validate_chat_completion_tool_choice(tool_choice=tool_choice)
|
|
|
|
|
|
def test_models_by_provider():
|
|
"""
|
|
Make sure all providers from model map are in the valid providers list
|
|
"""
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
from litellm import models_by_provider
|
|
|
|
providers = set()
|
|
for k, v in litellm.model_cost.items():
|
|
if "_" in v["litellm_provider"] and "-" in v["litellm_provider"]:
|
|
continue
|
|
elif k == "sample_spec":
|
|
continue
|
|
elif (
|
|
v["litellm_provider"] == "sagemaker"
|
|
or v["litellm_provider"] == "bedrock_converse"
|
|
):
|
|
continue
|
|
else:
|
|
providers.add(v["litellm_provider"])
|
|
|
|
for provider in providers:
|
|
assert provider in models_by_provider.keys()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"litellm_params, disable_end_user_cost_tracking, expected_end_user_id",
|
|
[
|
|
({}, False, None),
|
|
({"user_api_key_end_user_id": "123"}, False, "123"),
|
|
({"user_api_key_end_user_id": "123"}, True, None),
|
|
],
|
|
)
|
|
def test_get_end_user_id_for_cost_tracking(
|
|
litellm_params, disable_end_user_cost_tracking, expected_end_user_id
|
|
):
|
|
from litellm.utils import get_end_user_id_for_cost_tracking
|
|
|
|
litellm.disable_end_user_cost_tracking = disable_end_user_cost_tracking
|
|
assert (
|
|
get_end_user_id_for_cost_tracking(litellm_params=litellm_params)
|
|
== expected_end_user_id
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"litellm_params, disable_end_user_cost_tracking_prometheus_only, expected_end_user_id",
|
|
[
|
|
({}, False, None),
|
|
({"user_api_key_end_user_id": "123"}, False, "123"),
|
|
({"user_api_key_end_user_id": "123"}, True, None),
|
|
],
|
|
)
|
|
def test_get_end_user_id_for_cost_tracking_prometheus_only(
|
|
litellm_params, disable_end_user_cost_tracking_prometheus_only, expected_end_user_id
|
|
):
|
|
from litellm.utils import get_end_user_id_for_cost_tracking
|
|
|
|
litellm.disable_end_user_cost_tracking_prometheus_only = (
|
|
disable_end_user_cost_tracking_prometheus_only
|
|
)
|
|
assert (
|
|
get_end_user_id_for_cost_tracking(
|
|
litellm_params=litellm_params, service_type="prometheus"
|
|
)
|
|
== expected_end_user_id
|
|
)
|
|
|
|
|
|
def test_is_prompt_caching_enabled_error_handling():
|
|
"""
|
|
Assert that `is_prompt_caching_valid_prompt` safely handles errors in `token_counter`.
|
|
"""
|
|
with patch(
|
|
"litellm.utils.token_counter",
|
|
side_effect=Exception(
|
|
"Mocked error, This should not raise an error. Instead is_prompt_caching_valid_prompt should return False."
|
|
),
|
|
):
|
|
result = litellm.utils.is_prompt_caching_valid_prompt(
|
|
messages=[{"role": "user", "content": "test"}],
|
|
tools=None,
|
|
custom_llm_provider="anthropic",
|
|
model="anthropic/claude-3-5-sonnet-20240620",
|
|
)
|
|
|
|
assert result is False # Should return False when an error occurs
|
|
|
|
|
|
def test_is_prompt_caching_enabled_return_default_image_dimensions():
|
|
"""
|
|
Assert that `is_prompt_caching_valid_prompt` calls token_counter with use_default_image_token_count=True
|
|
when processing messages containing images
|
|
|
|
IMPORTANT: Ensures Get token counter does not make a GET request to the image url
|
|
"""
|
|
with patch("litellm.utils.token_counter") as mock_token_counter:
|
|
litellm.utils.is_prompt_caching_valid_prompt(
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What is in this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": "https://www.gstatic.com/webp/gallery/1.webp",
|
|
"detail": "high",
|
|
},
|
|
},
|
|
],
|
|
}
|
|
],
|
|
tools=None,
|
|
custom_llm_provider="openai",
|
|
model="gpt-4o-mini",
|
|
)
|
|
|
|
# Assert token_counter was called with use_default_image_token_count=True
|
|
args_to_mock_token_counter = mock_token_counter.call_args[1]
|
|
print("args_to_mock", args_to_mock_token_counter)
|
|
assert args_to_mock_token_counter["use_default_image_token_count"] is True
|
|
|
|
|
|
def test_token_counter_with_image_url_with_detail_high():
|
|
"""
|
|
Assert that token_counter does not make a GET request to the image url when `use_default_image_token_count=True`
|
|
|
|
PROD TEST this is importat - Can impact latency very badly
|
|
"""
|
|
from litellm.constants import DEFAULT_IMAGE_TOKEN_COUNT
|
|
from litellm._logging import verbose_logger
|
|
import logging
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
|
|
_tokens = litellm.utils.token_counter(
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": "https://www.gstatic.com/webp/gallery/1.webp",
|
|
"detail": "high",
|
|
},
|
|
},
|
|
],
|
|
}
|
|
],
|
|
model="gpt-4o-mini",
|
|
use_default_image_token_count=True,
|
|
)
|
|
print("tokens", _tokens)
|
|
assert _tokens == DEFAULT_IMAGE_TOKEN_COUNT + 7
|
|
|
|
|
|
def test_fireworks_ai_document_inlining():
|
|
"""
|
|
With document inlining, all fireworks ai models are now:
|
|
- supports_pdf
|
|
- supports_vision
|
|
"""
|
|
from litellm.utils import supports_pdf_input, supports_vision
|
|
|
|
litellm._turn_on_debug()
|
|
|
|
assert supports_pdf_input("fireworks_ai/llama-3.1-8b-instruct") is True
|
|
assert supports_vision("fireworks_ai/llama-3.1-8b-instruct") is True
|
|
|
|
|
|
def test_logprobs_type():
|
|
from litellm.types.utils import Logprobs
|
|
|
|
logprobs = {
|
|
"text_offset": None,
|
|
"token_logprobs": None,
|
|
"tokens": None,
|
|
"top_logprobs": None,
|
|
}
|
|
logprobs = Logprobs(**logprobs)
|
|
assert logprobs.text_offset is None
|
|
assert logprobs.token_logprobs is None
|
|
assert logprobs.tokens is None
|
|
assert logprobs.top_logprobs is None
|
|
|
|
|
|
def test_get_valid_models_openai_proxy(monkeypatch):
|
|
from litellm.utils import get_valid_models
|
|
import litellm
|
|
|
|
litellm._turn_on_debug()
|
|
|
|
monkeypatch.setenv("LITELLM_PROXY_API_KEY", "sk-1234")
|
|
monkeypatch.setenv("LITELLM_PROXY_API_BASE", "https://litellm-api.up.railway.app/")
|
|
monkeypatch.delenv("FIREWORKS_AI_ACCOUNT_ID", None)
|
|
monkeypatch.delenv("FIREWORKS_AI_API_KEY", None)
|
|
|
|
mock_response_data = {
|
|
"object": "list",
|
|
"data": [
|
|
{
|
|
"id": "gpt-4o",
|
|
"object": "model",
|
|
"created": 1686935002,
|
|
"owned_by": "organization-owner",
|
|
},
|
|
],
|
|
}
|
|
|
|
# Create a mock response object
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.json.return_value = mock_response_data
|
|
|
|
with patch.object(
|
|
litellm.module_level_client, "get", return_value=mock_response
|
|
) as mock_post:
|
|
valid_models = get_valid_models(check_provider_endpoint=True)
|
|
assert "litellm_proxy/gpt-4o" in valid_models
|
|
|
|
|
|
def test_get_valid_models_fireworks_ai(monkeypatch):
|
|
from litellm.utils import get_valid_models
|
|
import litellm
|
|
|
|
litellm._turn_on_debug()
|
|
|
|
monkeypatch.setenv("FIREWORKS_API_KEY", "sk-1234")
|
|
monkeypatch.setenv("FIREWORKS_ACCOUNT_ID", "1234")
|
|
monkeypatch.setattr(litellm, "provider_list", ["fireworks_ai"])
|
|
|
|
mock_response_data = {
|
|
"models": [
|
|
{
|
|
"name": "accounts/fireworks/models/llama-3.1-8b-instruct",
|
|
"displayName": "<string>",
|
|
"description": "<string>",
|
|
"createTime": "2023-11-07T05:31:56Z",
|
|
"createdBy": "<string>",
|
|
"state": "STATE_UNSPECIFIED",
|
|
"status": {"code": "OK", "message": "<string>"},
|
|
"kind": "KIND_UNSPECIFIED",
|
|
"githubUrl": "<string>",
|
|
"huggingFaceUrl": "<string>",
|
|
"baseModelDetails": {
|
|
"worldSize": 123,
|
|
"checkpointFormat": "CHECKPOINT_FORMAT_UNSPECIFIED",
|
|
"parameterCount": "<string>",
|
|
"moe": True,
|
|
"tunable": True,
|
|
},
|
|
"peftDetails": {
|
|
"baseModel": "<string>",
|
|
"r": 123,
|
|
"targetModules": ["<string>"],
|
|
},
|
|
"teftDetails": {},
|
|
"public": True,
|
|
"conversationConfig": {
|
|
"style": "<string>",
|
|
"system": "<string>",
|
|
"template": "<string>",
|
|
},
|
|
"contextLength": 123,
|
|
"supportsImageInput": True,
|
|
"supportsTools": True,
|
|
"importedFrom": "<string>",
|
|
"fineTuningJob": "<string>",
|
|
"defaultDraftModel": "<string>",
|
|
"defaultDraftTokenCount": 123,
|
|
"precisions": ["PRECISION_UNSPECIFIED"],
|
|
"deployedModelRefs": [
|
|
{
|
|
"name": "<string>",
|
|
"deployment": "<string>",
|
|
"state": "STATE_UNSPECIFIED",
|
|
"default": True,
|
|
"public": True,
|
|
}
|
|
],
|
|
"cluster": "<string>",
|
|
"deprecationDate": {"year": 123, "month": 123, "day": 123},
|
|
}
|
|
],
|
|
"nextPageToken": "<string>",
|
|
"totalSize": 123,
|
|
}
|
|
|
|
# Create a mock response object
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.json.return_value = mock_response_data
|
|
|
|
with patch.object(
|
|
litellm.module_level_client, "get", return_value=mock_response
|
|
) as mock_post:
|
|
valid_models = get_valid_models(check_provider_endpoint=True)
|
|
mock_post.assert_called_once()
|
|
assert (
|
|
"fireworks_ai/accounts/fireworks/models/llama-3.1-8b-instruct"
|
|
in valid_models
|
|
)
|
|
|
|
|
|
def test_get_valid_models_default(monkeypatch):
|
|
"""
|
|
Ensure that the default models is used when error retrieving from model api.
|
|
|
|
Prevent regression for existing usage.
|
|
"""
|
|
from litellm.utils import get_valid_models
|
|
import litellm
|
|
|
|
monkeypatch.setenv("FIREWORKS_API_KEY", "sk-1234")
|
|
valid_models = get_valid_models()
|
|
assert len(valid_models) > 0
|
|
|
|
|
|
def test_supports_vision_gemini():
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
from litellm.utils import supports_vision
|
|
|
|
assert supports_vision("gemini-1.5-pro") is True
|
|
|
|
|
|
def test_pick_cheapest_chat_model_from_llm_provider():
|
|
from litellm.litellm_core_utils.llm_request_utils import (
|
|
pick_cheapest_chat_models_from_llm_provider,
|
|
)
|
|
|
|
assert len(pick_cheapest_chat_models_from_llm_provider("openai", n=3)) == 3
|
|
|
|
assert len(pick_cheapest_chat_models_from_llm_provider("unknown", n=1)) == 0
|
|
|
|
|
|
def test_get_potential_model_names():
|
|
from litellm.utils import _get_potential_model_names
|
|
|
|
assert _get_potential_model_names(
|
|
model="bedrock/ap-northeast-1/anthropic.claude-instant-v1",
|
|
custom_llm_provider="bedrock",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("num_retries", [0, 1, 5])
|
|
def test_get_num_retries(num_retries):
|
|
from litellm.utils import _get_wrapper_num_retries
|
|
|
|
assert _get_wrapper_num_retries(
|
|
kwargs={"num_retries": num_retries}, exception=Exception("test")
|
|
) == (
|
|
num_retries,
|
|
{
|
|
"num_retries": num_retries,
|
|
},
|
|
)
|
|
|
|
|
|
def test_add_custom_logger_callback_to_specific_event(monkeypatch):
|
|
from litellm.utils import _add_custom_logger_callback_to_specific_event
|
|
|
|
monkeypatch.setattr(litellm, "success_callback", [])
|
|
monkeypatch.setattr(litellm, "failure_callback", [])
|
|
|
|
_add_custom_logger_callback_to_specific_event("langfuse", "success")
|
|
|
|
assert len(litellm.success_callback) == 1
|
|
assert len(litellm.failure_callback) == 0
|
|
|
|
|
|
def test_add_custom_logger_callback_to_specific_event_e2e(monkeypatch):
|
|
|
|
monkeypatch.setattr(litellm, "success_callback", [])
|
|
monkeypatch.setattr(litellm, "failure_callback", [])
|
|
monkeypatch.setattr(litellm, "callbacks", [])
|
|
|
|
litellm.success_callback = ["humanloop"]
|
|
|
|
curr_len_success_callback = len(litellm.success_callback)
|
|
curr_len_failure_callback = len(litellm.failure_callback)
|
|
|
|
litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[{"role": "user", "content": "Hello, world!"}],
|
|
mock_response="Testing langfuse",
|
|
)
|
|
|
|
assert len(litellm.success_callback) == curr_len_success_callback
|
|
assert len(litellm.failure_callback) == curr_len_failure_callback
|
|
|
|
|
|
def test_custom_logger_exists_in_callbacks_individual_functions(monkeypatch):
|
|
"""
|
|
Test _custom_logger_class_exists_in_success_callbacks and _custom_logger_class_exists_in_failure_callbacks helper functions
|
|
Tests if logger is found in different callback lists
|
|
"""
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
from litellm.utils import (
|
|
_custom_logger_class_exists_in_failure_callbacks,
|
|
_custom_logger_class_exists_in_success_callbacks,
|
|
)
|
|
|
|
# Create a mock CustomLogger class
|
|
class MockCustomLogger(CustomLogger):
|
|
def log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
pass
|
|
|
|
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
|
|
pass
|
|
|
|
# Reset all callback lists
|
|
for list_name in [
|
|
"callbacks",
|
|
"_async_success_callback",
|
|
"_async_failure_callback",
|
|
"success_callback",
|
|
"failure_callback",
|
|
]:
|
|
monkeypatch.setattr(litellm, list_name, [])
|
|
|
|
mock_logger = MockCustomLogger()
|
|
|
|
# Test 1: No logger exists in any callback list
|
|
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == False
|
|
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == False
|
|
|
|
# Test 2: Logger exists in success_callback
|
|
litellm.success_callback.append(mock_logger)
|
|
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == True
|
|
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == False
|
|
|
|
# Reset callbacks
|
|
litellm.success_callback = []
|
|
|
|
# Test 3: Logger exists in _async_success_callback
|
|
litellm._async_success_callback.append(mock_logger)
|
|
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == True
|
|
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == False
|
|
|
|
# Reset callbacks
|
|
litellm._async_success_callback = []
|
|
|
|
# Test 4: Logger exists in failure_callback
|
|
litellm.failure_callback.append(mock_logger)
|
|
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == False
|
|
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == True
|
|
|
|
# Reset callbacks
|
|
litellm.failure_callback = []
|
|
|
|
# Test 5: Logger exists in _async_failure_callback
|
|
litellm._async_failure_callback.append(mock_logger)
|
|
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == False
|
|
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == True
|
|
|
|
# Test 6: Logger exists in both success and failure callbacks
|
|
litellm.success_callback.append(mock_logger)
|
|
litellm.failure_callback.append(mock_logger)
|
|
assert _custom_logger_class_exists_in_success_callbacks(mock_logger) == True
|
|
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger) == True
|
|
|
|
# Test 7: Different instance of same logger class
|
|
mock_logger_2 = MockCustomLogger()
|
|
assert _custom_logger_class_exists_in_success_callbacks(mock_logger_2) == True
|
|
assert _custom_logger_class_exists_in_failure_callbacks(mock_logger_2) == True
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_add_custom_logger_callback_to_specific_event_with_duplicates(
|
|
monkeypatch,
|
|
):
|
|
"""
|
|
Test that when a callback exists in both success_callback and _async_success_callback,
|
|
it's not added again
|
|
"""
|
|
from litellm.integrations.langfuse.langfuse_prompt_management import (
|
|
LangfusePromptManagement,
|
|
)
|
|
|
|
# Reset all callback lists
|
|
monkeypatch.setattr(litellm, "callbacks", [])
|
|
monkeypatch.setattr(litellm, "_async_success_callback", [])
|
|
monkeypatch.setattr(litellm, "_async_failure_callback", [])
|
|
monkeypatch.setattr(litellm, "success_callback", [])
|
|
monkeypatch.setattr(litellm, "failure_callback", [])
|
|
|
|
# Add logger to both success_callback and _async_success_callback
|
|
langfuse_logger = LangfusePromptManagement()
|
|
litellm.success_callback.append(langfuse_logger)
|
|
litellm._async_success_callback.append(langfuse_logger)
|
|
|
|
# Get initial lengths
|
|
initial_success_callback_len = len(litellm.success_callback)
|
|
initial_async_success_callback_len = len(litellm._async_success_callback)
|
|
|
|
# Make a completion call
|
|
await litellm.acompletion(
|
|
model="gpt-4o-mini",
|
|
messages=[{"role": "user", "content": "Hello, world!"}],
|
|
mock_response="Testing duplicate callbacks",
|
|
)
|
|
|
|
# Assert no new callbacks were added
|
|
assert len(litellm.success_callback) == initial_success_callback_len
|
|
assert len(litellm._async_success_callback) == initial_async_success_callback_len
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_add_custom_logger_callback_to_specific_event_with_duplicates_success_callback(
|
|
monkeypatch,
|
|
):
|
|
"""
|
|
Test that when a callback exists in both success_callback and _async_success_callback,
|
|
it's not added again
|
|
"""
|
|
from litellm.integrations.langfuse.langfuse_prompt_management import (
|
|
LangfusePromptManagement,
|
|
)
|
|
|
|
# Reset all callback lists
|
|
monkeypatch.setattr(litellm, "callbacks", [])
|
|
monkeypatch.setattr(litellm, "_async_success_callback", [])
|
|
monkeypatch.setattr(litellm, "_async_failure_callback", [])
|
|
monkeypatch.setattr(litellm, "success_callback", [])
|
|
monkeypatch.setattr(litellm, "failure_callback", [])
|
|
|
|
# Add logger to both success_callback and _async_success_callback
|
|
langfuse_logger = LangfusePromptManagement()
|
|
litellm.success_callback.append(langfuse_logger)
|
|
|
|
# Get initial lengths
|
|
initial_success_callback_len = len(litellm.success_callback)
|
|
initial_async_success_callback_len = len(litellm._async_success_callback)
|
|
|
|
# Make a completion call
|
|
await litellm.acompletion(
|
|
model="gpt-4o-mini",
|
|
messages=[{"role": "user", "content": "Hello, world!"}],
|
|
mock_response="Testing duplicate callbacks",
|
|
)
|
|
|
|
# Assert no new callbacks were added
|
|
assert len(litellm.success_callback) == initial_success_callback_len
|
|
assert len(litellm._async_success_callback) == initial_async_success_callback_len
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_add_custom_logger_callback_to_specific_event_with_duplicates_callbacks(
|
|
monkeypatch,
|
|
):
|
|
"""
|
|
Test that when a callback exists in both success_callback and _async_success_callback,
|
|
it's not added again
|
|
"""
|
|
from litellm.integrations.langfuse.langfuse_prompt_management import (
|
|
LangfusePromptManagement,
|
|
)
|
|
|
|
# Reset all callback lists
|
|
monkeypatch.setattr(litellm, "callbacks", [])
|
|
monkeypatch.setattr(litellm, "_async_success_callback", [])
|
|
monkeypatch.setattr(litellm, "_async_failure_callback", [])
|
|
monkeypatch.setattr(litellm, "success_callback", [])
|
|
monkeypatch.setattr(litellm, "failure_callback", [])
|
|
|
|
# Add logger to both success_callback and _async_success_callback
|
|
langfuse_logger = LangfusePromptManagement()
|
|
litellm.callbacks.append(langfuse_logger)
|
|
|
|
# Make a completion call
|
|
await litellm.acompletion(
|
|
model="gpt-4o-mini",
|
|
messages=[{"role": "user", "content": "Hello, world!"}],
|
|
mock_response="Testing duplicate callbacks",
|
|
)
|
|
|
|
# Assert no new callbacks were added
|
|
initial_callbacks_len = len(litellm.callbacks)
|
|
initial_async_success_callback_len = len(litellm._async_success_callback)
|
|
initial_success_callback_len = len(litellm.success_callback)
|
|
print(
|
|
f"Num callbacks before: litellm.callbacks: {len(litellm.callbacks)}, litellm._async_success_callback: {len(litellm._async_success_callback)}, litellm.success_callback: {len(litellm.success_callback)}"
|
|
)
|
|
|
|
for _ in range(10):
|
|
await litellm.acompletion(
|
|
model="gpt-4o-mini",
|
|
messages=[{"role": "user", "content": "Hello, world!"}],
|
|
mock_response="Testing duplicate callbacks",
|
|
)
|
|
|
|
assert len(litellm.callbacks) == initial_callbacks_len
|
|
assert len(litellm._async_success_callback) == initial_async_success_callback_len
|
|
assert len(litellm.success_callback) == initial_success_callback_len
|
|
|
|
print(
|
|
f"Num callbacks after 10 mock calls: litellm.callbacks: {len(litellm.callbacks)}, litellm._async_success_callback: {len(litellm._async_success_callback)}, litellm.success_callback: {len(litellm.success_callback)}"
|
|
)
|
|
|
|
|
|
def test_add_custom_logger_callback_to_specific_event_e2e_failure(monkeypatch):
|
|
from litellm.integrations.openmeter import OpenMeterLogger
|
|
|
|
monkeypatch.setattr(litellm, "success_callback", [])
|
|
monkeypatch.setattr(litellm, "failure_callback", [])
|
|
monkeypatch.setattr(litellm, "callbacks", [])
|
|
monkeypatch.setenv("OPENMETER_API_KEY", "wedlwe")
|
|
monkeypatch.setenv("OPENMETER_API_URL", "https://openmeter.dev")
|
|
|
|
litellm.failure_callback = ["openmeter"]
|
|
|
|
curr_len_success_callback = len(litellm.success_callback)
|
|
curr_len_failure_callback = len(litellm.failure_callback)
|
|
|
|
litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[{"role": "user", "content": "Hello, world!"}],
|
|
mock_response="Testing langfuse",
|
|
)
|
|
|
|
assert len(litellm.success_callback) == curr_len_success_callback
|
|
assert len(litellm.failure_callback) == curr_len_failure_callback
|
|
|
|
assert any(
|
|
isinstance(callback, OpenMeterLogger) for callback in litellm.failure_callback
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_wrapper_kwargs_passthrough():
|
|
from litellm.utils import client
|
|
from litellm.litellm_core_utils.litellm_logging import (
|
|
Logging as LiteLLMLoggingObject,
|
|
)
|
|
|
|
# Create mock original function
|
|
mock_original = AsyncMock()
|
|
|
|
# Apply decorator
|
|
@client
|
|
async def test_function(**kwargs):
|
|
return await mock_original(**kwargs)
|
|
|
|
# Test kwargs
|
|
test_kwargs = {"base_model": "gpt-4o-mini"}
|
|
|
|
# Call decorated function
|
|
await test_function(**test_kwargs)
|
|
|
|
mock_original.assert_called_once()
|
|
|
|
# get litellm logging object
|
|
litellm_logging_obj: LiteLLMLoggingObject = mock_original.call_args.kwargs.get(
|
|
"litellm_logging_obj"
|
|
)
|
|
assert litellm_logging_obj is not None
|
|
|
|
print(
|
|
f"litellm_logging_obj.model_call_details: {litellm_logging_obj.model_call_details}"
|
|
)
|
|
|
|
# get base model
|
|
assert (
|
|
litellm_logging_obj.model_call_details["litellm_params"]["base_model"]
|
|
== "gpt-4o-mini"
|
|
)
|
|
|
|
|
|
def test_dict_to_response_format_helper():
|
|
from litellm.llms.base_llm.base_utils import _dict_to_response_format_helper
|
|
|
|
args = {
|
|
"response_format": {
|
|
"type": "json_schema",
|
|
"json_schema": {
|
|
"schema": {
|
|
"$defs": {
|
|
"CalendarEvent": {
|
|
"properties": {
|
|
"name": {"title": "Name", "type": "string"},
|
|
"date": {"title": "Date", "type": "string"},
|
|
"participants": {
|
|
"items": {"type": "string"},
|
|
"title": "Participants",
|
|
"type": "array",
|
|
},
|
|
},
|
|
"required": ["name", "date", "participants"],
|
|
"title": "CalendarEvent",
|
|
"type": "object",
|
|
"additionalProperties": False,
|
|
}
|
|
},
|
|
"properties": {
|
|
"events": {
|
|
"items": {"$ref": "#/$defs/CalendarEvent"},
|
|
"title": "Events",
|
|
"type": "array",
|
|
}
|
|
},
|
|
"required": ["events"],
|
|
"title": "EventsList",
|
|
"type": "object",
|
|
"additionalProperties": False,
|
|
},
|
|
"name": "EventsList",
|
|
"strict": True,
|
|
},
|
|
},
|
|
"ref_template": "/$defs/{model}",
|
|
}
|
|
_dict_to_response_format_helper(**args)
|
|
|
|
|
|
def test_validate_user_messages_invalid_content_type():
|
|
from litellm.utils import validate_chat_completion_user_messages
|
|
|
|
messages = [{"content": [{"type": "invalid_type", "text": "Hello"}]}]
|
|
|
|
with pytest.raises(Exception) as e:
|
|
validate_chat_completion_user_messages(messages)
|
|
|
|
assert "Invalid message" in str(e)
|
|
print(e)
|
|
|
|
|
|
from litellm.integrations.custom_guardrail import CustomGuardrail
|
|
from litellm.utils import get_applied_guardrails
|
|
from unittest.mock import Mock
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"test_case",
|
|
[
|
|
{
|
|
"name": "default_on_guardrail",
|
|
"callbacks": [
|
|
CustomGuardrail(guardrail_name="test_guardrail", default_on=True)
|
|
],
|
|
"kwargs": {"metadata": {"requester_metadata": {"guardrails": []}}},
|
|
"expected": ["test_guardrail"],
|
|
},
|
|
{
|
|
"name": "request_specific_guardrail",
|
|
"callbacks": [
|
|
CustomGuardrail(guardrail_name="test_guardrail", default_on=False)
|
|
],
|
|
"kwargs": {
|
|
"metadata": {"requester_metadata": {"guardrails": ["test_guardrail"]}}
|
|
},
|
|
"expected": ["test_guardrail"],
|
|
},
|
|
{
|
|
"name": "multiple_guardrails",
|
|
"callbacks": [
|
|
CustomGuardrail(guardrail_name="default_guardrail", default_on=True),
|
|
CustomGuardrail(guardrail_name="request_guardrail", default_on=False),
|
|
],
|
|
"kwargs": {
|
|
"metadata": {
|
|
"requester_metadata": {"guardrails": ["request_guardrail"]}
|
|
}
|
|
},
|
|
"expected": ["default_guardrail", "request_guardrail"],
|
|
},
|
|
{
|
|
"name": "empty_metadata",
|
|
"callbacks": [
|
|
CustomGuardrail(guardrail_name="test_guardrail", default_on=False)
|
|
],
|
|
"kwargs": {},
|
|
"expected": [],
|
|
},
|
|
{
|
|
"name": "none_callback",
|
|
"callbacks": [
|
|
None,
|
|
CustomGuardrail(guardrail_name="test_guardrail", default_on=True),
|
|
],
|
|
"kwargs": {},
|
|
"expected": ["test_guardrail"],
|
|
},
|
|
{
|
|
"name": "non_guardrail_callback",
|
|
"callbacks": [
|
|
Mock(),
|
|
CustomGuardrail(guardrail_name="test_guardrail", default_on=True),
|
|
],
|
|
"kwargs": {},
|
|
"expected": ["test_guardrail"],
|
|
},
|
|
],
|
|
)
|
|
def test_get_applied_guardrails(test_case):
|
|
|
|
# Setup
|
|
litellm.callbacks = test_case["callbacks"]
|
|
|
|
# Execute
|
|
result = get_applied_guardrails(test_case["kwargs"])
|
|
|
|
# Assert
|
|
assert sorted(result) == sorted(test_case["expected"])
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"endpoint, params, expected_bool",
|
|
[
|
|
("localhost:4000/v1/rerank", ["max_chunks_per_doc"], True),
|
|
("localhost:4000/v2/rerank", ["max_chunks_per_doc"], False),
|
|
("localhost:4000", ["max_chunks_per_doc"], True),
|
|
("localhost:4000/v1/rerank", ["max_tokens_per_doc"], True),
|
|
("localhost:4000/v2/rerank", ["max_tokens_per_doc"], False),
|
|
("localhost:4000", ["max_tokens_per_doc"], False),
|
|
(
|
|
"localhost:4000/v1/rerank",
|
|
["max_chunks_per_doc", "max_tokens_per_doc"],
|
|
True,
|
|
),
|
|
(
|
|
"localhost:4000/v2/rerank",
|
|
["max_chunks_per_doc", "max_tokens_per_doc"],
|
|
False,
|
|
),
|
|
("localhost:4000", ["max_chunks_per_doc", "max_tokens_per_doc"], False),
|
|
],
|
|
)
|
|
def test_should_use_cohere_v1_client(endpoint, params, expected_bool):
|
|
assert litellm.utils.should_use_cohere_v1_client(endpoint, params) == expected_bool
|
|
|
|
|
|
def test_add_openai_metadata():
|
|
from litellm.utils import add_openai_metadata
|
|
|
|
metadata = {
|
|
"user_api_key_end_user_id": "123",
|
|
"hidden_params": {"api_key": "123"},
|
|
"litellm_parent_otel_span": MagicMock(),
|
|
"none-val": None,
|
|
"int-val": 1,
|
|
"dict-val": {"a": 1, "b": 2},
|
|
}
|
|
|
|
result = add_openai_metadata(metadata)
|
|
|
|
assert result == {
|
|
"user_api_key_end_user_id": "123",
|
|
}
|
|
|
|
|
|
def test_message_object():
|
|
from litellm.types.utils import Message
|
|
|
|
message = Message(content="Hello, world!", role="user")
|
|
assert message.content == "Hello, world!"
|
|
assert message.role == "user"
|
|
assert not hasattr(message, "audio")
|
|
assert not hasattr(message, "thinking_blocks")
|
|
assert not hasattr(message, "reasoning_content")
|
|
|
|
|
|
def test_delta_object():
|
|
from litellm.types.utils import Delta
|
|
|
|
delta = Delta(content="Hello, world!", role="user")
|
|
assert delta.content == "Hello, world!"
|
|
assert delta.role == "user"
|
|
assert not hasattr(delta, "thinking_blocks")
|
|
assert not hasattr(delta, "reasoning_content")
|
|
|
|
|
|
def test_get_provider_audio_transcription_config():
|
|
from litellm.utils import ProviderConfigManager
|
|
from litellm.types.utils import LlmProviders
|
|
|
|
for provider in LlmProviders:
|
|
config = ProviderConfigManager.get_provider_audio_transcription_config(
|
|
model="whisper-1", provider=provider
|
|
)
|