mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* refactor(vertex_ai_partner_models/anthropic): refactor anthropic to use partner model logic * fix(vertex_ai/): support passing custom api base to partner models Fixes https://github.com/BerriAI/litellm/issues/4317 * fix(proxy_server.py): Fix prometheus premium user check logic * docs(prometheus.md): update quick start docs * fix(custom_llm.py): support passing dynamic api key + api base * fix(realtime_api/main.py): Add request/response logging for realtime api endpoints Closes https://github.com/BerriAI/litellm/issues/6081 * feat(openai/realtime): add openai realtime api logging Closes https://github.com/BerriAI/litellm/issues/6081 * fix(realtime_streaming.py): fix linting errors * fix(realtime_streaming.py): fix linting errors * fix: fix linting errors * fix pattern match router * Add literalai in the sidebar observability category (#6163) * fix: add literalai in the sidebar * fix: typo * update (#6160) * Feat: Add Langtrace integration (#5341) * Feat: Add Langtrace integration * add langtrace service name * fix timestamps for traces * add tests * Discard Callback + use existing otel logger * cleanup * remove print statments * remove callback * add docs * docs * add logging docs * format logging * remove emoji and add litellm proxy example * format logging * format `logging.md` * add langtrace docs to logging.md * sync conflict * docs fix * (perf) move s3 logging to Batch logging + async [94% faster perf under 100 RPS on 1 litellm instance] (#6165) * fix move s3 to use customLogger * add basic s3 logging test * add s3 to custom logger compatible * use batch logger for s3 * s3 set flush interval and batch size * fix s3 logging * add notes on s3 logging * fix s3 logging * add basic s3 logging test * fix s3 type errors * add test for sync logging on s3 * fix: fix to debug log --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: Willy Douhard <willy.douhard@gmail.com> Co-authored-by: yujonglee <yujonglee.dev@gmail.com> Co-authored-by: Ali Waleed <ali@scale3labs.com>
117 lines
3.5 KiB
Python
117 lines
3.5 KiB
Python
"""Abstraction function for OpenAI's realtime API"""
|
|
|
|
import os
|
|
from typing import Any, Optional
|
|
|
|
import litellm
|
|
from litellm import get_llm_provider
|
|
from litellm.secret_managers.main import get_secret_str
|
|
from litellm.types.router import GenericLiteLLMParams
|
|
|
|
from ..litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
|
|
from ..llms.AzureOpenAI.realtime.handler import AzureOpenAIRealtime
|
|
from ..llms.OpenAI.realtime.handler import OpenAIRealtime
|
|
from ..utils import client as wrapper_client
|
|
|
|
azure_realtime = AzureOpenAIRealtime()
|
|
openai_realtime = OpenAIRealtime()
|
|
|
|
|
|
@wrapper_client
|
|
async def _arealtime(
|
|
model: str,
|
|
websocket: Any, # fastapi websocket
|
|
api_base: Optional[str] = None,
|
|
api_key: Optional[str] = None,
|
|
api_version: Optional[str] = None,
|
|
azure_ad_token: Optional[str] = None,
|
|
client: Optional[Any] = None,
|
|
timeout: Optional[float] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Private function to handle the realtime API call.
|
|
|
|
For PROXY use only.
|
|
"""
|
|
litellm_logging_obj: LiteLLMLogging = kwargs.get("litellm_logging_obj") # type: ignore
|
|
litellm_call_id: Optional[str] = kwargs.get("litellm_call_id", None)
|
|
proxy_server_request = kwargs.get("proxy_server_request", None)
|
|
model_info = kwargs.get("model_info", None)
|
|
metadata = kwargs.get("metadata", {})
|
|
user = kwargs.get("user", None)
|
|
litellm_params = GenericLiteLLMParams(**kwargs)
|
|
|
|
model, _custom_llm_provider, dynamic_api_key, dynamic_api_base = get_llm_provider(
|
|
model=model,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
)
|
|
|
|
litellm_logging_obj.update_environment_variables(
|
|
model=model,
|
|
user=user,
|
|
optional_params={},
|
|
litellm_params={
|
|
"litellm_call_id": litellm_call_id,
|
|
"proxy_server_request": proxy_server_request,
|
|
"model_info": model_info,
|
|
"metadata": metadata,
|
|
"preset_cache_key": None,
|
|
"stream_response": {},
|
|
},
|
|
custom_llm_provider=_custom_llm_provider,
|
|
)
|
|
|
|
if _custom_llm_provider == "azure":
|
|
api_base = (
|
|
dynamic_api_base
|
|
or litellm_params.api_base
|
|
or litellm.api_base
|
|
or get_secret_str("AZURE_API_BASE")
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
dynamic_api_key
|
|
or litellm.api_key
|
|
or litellm.openai_key
|
|
or get_secret_str("AZURE_API_KEY")
|
|
)
|
|
|
|
await azure_realtime.async_realtime(
|
|
model=model,
|
|
websocket=websocket,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
api_version="2024-10-01-preview",
|
|
azure_ad_token=None,
|
|
client=None,
|
|
timeout=timeout,
|
|
logging_obj=litellm_logging_obj,
|
|
)
|
|
elif _custom_llm_provider == "openai":
|
|
api_base = (
|
|
dynamic_api_base
|
|
or litellm_params.api_base
|
|
or litellm.api_base
|
|
or "https://api.openai.com/"
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
dynamic_api_key
|
|
or litellm.api_key
|
|
or litellm.openai_key
|
|
or get_secret_str("OPENAI_API_KEY")
|
|
)
|
|
|
|
await openai_realtime.async_realtime(
|
|
model=model,
|
|
websocket=websocket,
|
|
logging_obj=litellm_logging_obj,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
client=None,
|
|
timeout=timeout,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported model: {model}")
|