mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
182 lines
6.3 KiB
Python
182 lines
6.3 KiB
Python
"""
|
|
Main File for Fine Tuning API implementation
|
|
|
|
https://platform.openai.com/docs/api-reference/fine-tuning
|
|
|
|
- fine_tuning.jobs.create()
|
|
- fine_tuning.jobs.list()
|
|
- client.fine_tuning.jobs.list_events()
|
|
"""
|
|
|
|
import asyncio
|
|
import contextvars
|
|
import os
|
|
from functools import partial
|
|
from typing import Any, Coroutine, Dict, Literal, Optional, Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.llms.openai_fine_tuning.openai import (
|
|
FineTuningJob,
|
|
FineTuningJobCreate,
|
|
OpenAIFineTuningAPI,
|
|
)
|
|
from litellm.types.llms.openai import Hyperparameters
|
|
from litellm.types.router import *
|
|
from litellm.utils import supports_httpx_timeout
|
|
|
|
####### ENVIRONMENT VARIABLES ###################
|
|
openai_fine_tuning_instance = OpenAIFineTuningAPI()
|
|
#################################################
|
|
|
|
|
|
async def acreate_fine_tuning_job(
|
|
model: str,
|
|
training_file: str,
|
|
hyperparameters: Optional[Hyperparameters] = {},
|
|
suffix: Optional[str] = None,
|
|
validation_file: Optional[str] = None,
|
|
integrations: Optional[List[str]] = None,
|
|
seed: Optional[int] = None,
|
|
custom_llm_provider: Literal["openai"] = "openai",
|
|
extra_headers: Optional[Dict[str, str]] = None,
|
|
extra_body: Optional[Dict[str, str]] = None,
|
|
**kwargs,
|
|
) -> FineTuningJob:
|
|
"""
|
|
Async: Creates and executes a batch from an uploaded file of request
|
|
|
|
LiteLLM Equivalent of POST: https://api.openai.com/v1/batches
|
|
"""
|
|
try:
|
|
loop = asyncio.get_event_loop()
|
|
kwargs["acreate_fine_tuning_job"] = True
|
|
|
|
# Use a partial function to pass your keyword arguments
|
|
func = partial(
|
|
create_fine_tuning_job,
|
|
model,
|
|
training_file,
|
|
hyperparameters,
|
|
suffix,
|
|
validation_file,
|
|
integrations,
|
|
seed,
|
|
custom_llm_provider,
|
|
extra_headers,
|
|
extra_body,
|
|
**kwargs,
|
|
)
|
|
|
|
# Add the context to the function
|
|
ctx = contextvars.copy_context()
|
|
func_with_context = partial(ctx.run, func)
|
|
init_response = await loop.run_in_executor(None, func_with_context)
|
|
if asyncio.iscoroutine(init_response):
|
|
response = await init_response
|
|
else:
|
|
response = init_response # type: ignore
|
|
return response
|
|
except Exception as e:
|
|
raise e
|
|
|
|
|
|
def create_fine_tuning_job(
|
|
model: str,
|
|
training_file: str,
|
|
hyperparameters: Optional[Hyperparameters] = {},
|
|
suffix: Optional[str] = None,
|
|
validation_file: Optional[str] = None,
|
|
integrations: Optional[List[str]] = None,
|
|
seed: Optional[int] = None,
|
|
custom_llm_provider: Literal["openai"] = "openai",
|
|
extra_headers: Optional[Dict[str, str]] = None,
|
|
extra_body: Optional[Dict[str, str]] = None,
|
|
**kwargs,
|
|
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]:
|
|
"""
|
|
Creates a fine-tuning job which begins the process of creating a new model from a given dataset.
|
|
|
|
Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete
|
|
|
|
"""
|
|
try:
|
|
optional_params = GenericLiteLLMParams(**kwargs)
|
|
if custom_llm_provider == "openai":
|
|
|
|
# for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
|
api_base = (
|
|
optional_params.api_base
|
|
or litellm.api_base
|
|
or os.getenv("OPENAI_API_BASE")
|
|
or "https://api.openai.com/v1"
|
|
)
|
|
organization = (
|
|
optional_params.organization
|
|
or litellm.organization
|
|
or os.getenv("OPENAI_ORGANIZATION", None)
|
|
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
optional_params.api_key
|
|
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
|
or litellm.openai_key
|
|
or os.getenv("OPENAI_API_KEY")
|
|
)
|
|
### TIMEOUT LOGIC ###
|
|
timeout = (
|
|
optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
|
)
|
|
# set timeout for 10 minutes by default
|
|
|
|
if (
|
|
timeout is not None
|
|
and isinstance(timeout, httpx.Timeout)
|
|
and supports_httpx_timeout(custom_llm_provider) == False
|
|
):
|
|
read_timeout = timeout.read or 600
|
|
timeout = read_timeout # default 10 min timeout
|
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
|
timeout = float(timeout) # type: ignore
|
|
elif timeout is None:
|
|
timeout = 600.0
|
|
|
|
_is_async = kwargs.pop("acreate_fine_tuning_job", False) is True
|
|
|
|
create_fine_tuning_job_data = FineTuningJobCreate(
|
|
model=model,
|
|
training_file=training_file,
|
|
hyperparameters=hyperparameters,
|
|
suffix=suffix,
|
|
validation_file=validation_file,
|
|
integrations=integrations,
|
|
seed=seed,
|
|
)
|
|
|
|
response = openai_fine_tuning_instance.create_fine_tuning_job(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
organization=organization,
|
|
create_fine_tuning_job_data=create_fine_tuning_job_data,
|
|
timeout=timeout,
|
|
max_retries=optional_params.max_retries,
|
|
_is_async=_is_async,
|
|
)
|
|
else:
|
|
raise litellm.exceptions.BadRequestError(
|
|
message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format(
|
|
custom_llm_provider
|
|
),
|
|
model="n/a",
|
|
llm_provider=custom_llm_provider,
|
|
response=httpx.Response(
|
|
status_code=400,
|
|
content="Unsupported provider",
|
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
|
),
|
|
)
|
|
return response
|
|
except Exception as e:
|
|
raise e
|