litellm-mirror/tests/mcp_tests/test_mcp_litellm_client.py
2025-03-21 14:36:32 -07:00

90 lines
3 KiB
Python

# Create server parameters for stdio connection
import os
import sys
import pytest
sys.path.insert(
0, os.path.abspath("../../..")
) # Adds the parent directory to the system path
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import os
from litellm.mcp_client.tools import (
load_mcp_tools,
transform_openai_tool_to_mcp_tool,
call_openai_tool,
)
import litellm
import pytest
import json
@pytest.mark.asyncio
async def test_mcp_agent():
server_params = StdioServerParameters(
command="python3",
# Make sure to update to the full absolute path to your math_server.py file
args=["./mcp_server.py"],
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# Get tools
tools = await load_mcp_tools(session=session, format="openai")
print("MCP TOOLS: ", tools)
# Create and run the agent
messages = [{"role": "user", "content": "what's (3 + 5)"}]
print(os.getenv("OPENAI_API_KEY"))
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
messages=messages,
tools=tools,
)
print("LLM RESPONSE: ", json.dumps(llm_response, indent=4, default=str))
# Add assertions to verify the response
assert llm_response["choices"][0]["message"]["tool_calls"] is not None
assert (
llm_response["choices"][0]["message"]["tool_calls"][0]["function"][
"name"
]
== "add"
)
openai_tool = llm_response["choices"][0]["message"]["tool_calls"][0]
# Convert the OpenAI tool to an MCP tool
mcp_tool = transform_openai_tool_to_mcp_tool(openai_tool)
print("MCP TOOL: ", mcp_tool)
# Call the tool using MCP client
call_result = await call_openai_tool(
session=session,
openai_tool=openai_tool,
)
print("CALL RESULT: ", call_result)
# send the tool result to the LLM
messages.append(llm_response["choices"][0]["message"])
messages.append(
{
"role": "tool",
"content": str(call_result.content[0].text),
"tool_call_id": openai_tool["id"],
}
)
print("final messages: ", messages)
llm_response = await litellm.acompletion(
model="gpt-4o",
api_key=os.getenv("OPENAI_API_KEY"),
messages=messages,
tools=tools,
)
print(
"FINAL LLM RESPONSE: ", json.dumps(llm_response, indent=4, default=str)
)