mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
641 lines
No EOL
29 KiB
Python
641 lines
No EOL
29 KiB
Python
from typing import Optional, Union, Any
|
|
import types, time, json
|
|
import httpx
|
|
from .base import BaseLLM
|
|
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, convert_to_model_response_object, Usage
|
|
from typing import Callable, Optional
|
|
import aiohttp, requests
|
|
import litellm
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
|
from openai import OpenAI, AsyncOpenAI
|
|
|
|
class OpenAIError(Exception):
|
|
def __init__(self, status_code, message, request: Optional[httpx.Request]=None, response: Optional[httpx.Response]=None):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
if request:
|
|
self.request = request
|
|
else:
|
|
self.request = httpx.Request(method="POST", url="https://api.openai.com/v1")
|
|
if response:
|
|
self.response = response
|
|
else:
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class OpenAIConfig():
|
|
"""
|
|
Reference: https://platform.openai.com/docs/api-reference/chat/create
|
|
|
|
The class `OpenAIConfig` provides configuration for the OpenAI's Chat API interface. Below are the parameters:
|
|
|
|
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
|
|
|
|
- `function_call` (string or object): This optional parameter controls how the model calls functions.
|
|
|
|
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
|
|
|
|
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
|
|
|
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
|
|
|
|
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
|
|
|
|
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
|
|
|
|
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
|
|
|
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
|
|
|
|
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
|
"""
|
|
frequency_penalty: Optional[int]=None
|
|
function_call: Optional[Union[str, dict]]=None
|
|
functions: Optional[list]=None
|
|
logit_bias: Optional[dict]=None
|
|
max_tokens: Optional[int]=None
|
|
n: Optional[int]=None
|
|
presence_penalty: Optional[int]=None
|
|
stop: Optional[Union[str, list]]=None
|
|
temperature: Optional[int]=None
|
|
top_p: Optional[int]=None
|
|
|
|
def __init__(self,
|
|
frequency_penalty: Optional[int]=None,
|
|
function_call: Optional[Union[str, dict]]=None,
|
|
functions: Optional[list]=None,
|
|
logit_bias: Optional[dict]=None,
|
|
max_tokens: Optional[int]=None,
|
|
n: Optional[int]=None,
|
|
presence_penalty: Optional[int]=None,
|
|
stop: Optional[Union[str, list]]=None,
|
|
temperature: Optional[int]=None,
|
|
top_p: Optional[int]=None,) -> None:
|
|
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
class OpenAITextCompletionConfig():
|
|
"""
|
|
Reference: https://platform.openai.com/docs/api-reference/completions/create
|
|
|
|
The class `OpenAITextCompletionConfig` provides configuration for the OpenAI's text completion API interface. Below are the parameters:
|
|
|
|
- `best_of` (integer or null): This optional parameter generates server-side completions and returns the one with the highest log probability per token.
|
|
|
|
- `echo` (boolean or null): This optional parameter will echo back the prompt in addition to the completion.
|
|
|
|
- `frequency_penalty` (number or null): Defaults to 0. It is a numbers from -2.0 to 2.0, where positive values decrease the model's likelihood to repeat the same line.
|
|
|
|
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
|
|
|
- `logprobs` (integer or null): This optional parameter includes the log probabilities on the most likely tokens as well as the chosen tokens.
|
|
|
|
- `max_tokens` (integer or null): This optional parameter sets the maximum number of tokens to generate in the completion.
|
|
|
|
- `n` (integer or null): This optional parameter sets how many completions to generate for each prompt.
|
|
|
|
- `presence_penalty` (number or null): Defaults to 0 and can be between -2.0 and 2.0. Positive values increase the model's likelihood to talk about new topics.
|
|
|
|
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
|
|
|
- `suffix` (string or null): Defines the suffix that comes after a completion of inserted text.
|
|
|
|
- `temperature` (number or null): This optional parameter defines the sampling temperature to use.
|
|
|
|
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
|
"""
|
|
best_of: Optional[int]=None
|
|
echo: Optional[bool]=None
|
|
frequency_penalty: Optional[int]=None
|
|
logit_bias: Optional[dict]=None
|
|
logprobs: Optional[int]=None
|
|
max_tokens: Optional[int]=None
|
|
n: Optional[int]=None
|
|
presence_penalty: Optional[int]=None
|
|
stop: Optional[Union[str, list]]=None
|
|
suffix: Optional[str]=None
|
|
temperature: Optional[float]=None
|
|
top_p: Optional[float]=None
|
|
|
|
def __init__(self,
|
|
best_of: Optional[int]=None,
|
|
echo: Optional[bool]=None,
|
|
frequency_penalty: Optional[int]=None,
|
|
logit_bias: Optional[dict]=None,
|
|
logprobs: Optional[int]=None,
|
|
max_tokens: Optional[int]=None,
|
|
n: Optional[int]=None,
|
|
presence_penalty: Optional[int]=None,
|
|
stop: Optional[Union[str, list]]=None,
|
|
suffix: Optional[str]=None,
|
|
temperature: Optional[float]=None,
|
|
top_p: Optional[float]=None) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
class OpenAIChatCompletion(BaseLLM):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def completion(self,
|
|
model_response: ModelResponse,
|
|
timeout: float,
|
|
model: Optional[str]=None,
|
|
messages: Optional[list]=None,
|
|
print_verbose: Optional[Callable]=None,
|
|
api_key: Optional[str]=None,
|
|
api_base: Optional[str]=None,
|
|
acompletion: bool = False,
|
|
logging_obj=None,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers: Optional[dict]=None,
|
|
custom_prompt_dict: dict={},
|
|
client=None
|
|
):
|
|
super().completion()
|
|
exception_mapping_worked = False
|
|
try:
|
|
if headers:
|
|
optional_params["extra_headers"] = headers
|
|
if model is None or messages is None:
|
|
raise OpenAIError(status_code=422, message=f"Missing model or messages")
|
|
|
|
if not isinstance(timeout, float):
|
|
raise OpenAIError(status_code=422, message=f"Timeout needs to be a float")
|
|
|
|
for _ in range(2): # if call fails due to alternating messages, retry with reformatted message
|
|
data = {
|
|
"model": model,
|
|
"messages": messages,
|
|
**optional_params
|
|
}
|
|
|
|
try:
|
|
max_retries = data.pop("max_retries", 2)
|
|
if acompletion is True:
|
|
if optional_params.get("stream", False):
|
|
return self.async_streaming(logging_obj=logging_obj, headers=headers, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
|
else:
|
|
return self.acompletion(data=data, headers=headers, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
|
elif optional_params.get("stream", False):
|
|
return self.streaming(logging_obj=logging_obj, headers=headers, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
|
|
else:
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
additional_args={"headers": headers, "api_base": api_base, "acompletion": acompletion, "complete_input_dict": data},
|
|
)
|
|
|
|
if not isinstance(max_retries, int):
|
|
raise OpenAIError(status_code=422, message="max retries must be an int")
|
|
if client is None:
|
|
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
|
|
else:
|
|
openai_client = client
|
|
response = openai_client.chat.completions.create(**data) # type: ignore
|
|
stringified_response = response.model_dump_json()
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
original_response=stringified_response,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response)
|
|
except Exception as e:
|
|
if "Conversation roles must alternate user/assistant" in str(e) or "user and assistant roles should be alternating" in str(e):
|
|
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility
|
|
new_messages = []
|
|
for i in range(len(messages)-1):
|
|
new_messages.append(messages[i])
|
|
if messages[i]["role"] == messages[i+1]["role"]:
|
|
if messages[i]["role"] == "user":
|
|
new_messages.append({"role": "assistant", "content": ""})
|
|
else:
|
|
new_messages.append({"role": "user", "content": ""})
|
|
new_messages.append(messages[-1])
|
|
messages = new_messages
|
|
elif "Last message must have role `user`" in str(e):
|
|
new_messages = messages
|
|
new_messages.append({"role": "user", "content": ""})
|
|
messages = new_messages
|
|
else:
|
|
raise e
|
|
except OpenAIError as e:
|
|
exception_mapping_worked = True
|
|
raise e
|
|
except Exception as e:
|
|
raise e
|
|
|
|
async def acompletion(self,
|
|
data: dict,
|
|
model_response: ModelResponse,
|
|
timeout: float,
|
|
api_key: Optional[str]=None,
|
|
api_base: Optional[str]=None,
|
|
client=None,
|
|
max_retries=None,
|
|
logging_obj=None,
|
|
headers=None
|
|
):
|
|
response = None
|
|
try:
|
|
if client is None:
|
|
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
|
|
else:
|
|
openai_aclient = client
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=data['messages'],
|
|
api_key=api_key,
|
|
additional_args={"headers": headers, "api_base": api_base, "acompletion": True, "complete_input_dict": data},
|
|
)
|
|
response = await openai_aclient.chat.completions.create(**data)
|
|
stringified_response = response.model_dump_json()
|
|
logging_obj.post_call(
|
|
input=data['messages'],
|
|
api_key=api_key,
|
|
original_response=stringified_response,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response)
|
|
except Exception as e:
|
|
if response and hasattr(response, "text"):
|
|
raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
|
|
else:
|
|
if type(e).__name__ == "ReadTimeout":
|
|
raise OpenAIError(status_code=408, message=f"{type(e).__name__}")
|
|
else:
|
|
raise OpenAIError(status_code=500, message=f"{str(e)}")
|
|
|
|
def streaming(self,
|
|
logging_obj,
|
|
timeout: float,
|
|
data: dict,
|
|
model: str,
|
|
api_key: Optional[str]=None,
|
|
api_base: Optional[str]=None,
|
|
client = None,
|
|
max_retries=None,
|
|
headers=None
|
|
):
|
|
if client is None:
|
|
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
|
|
else:
|
|
openai_client = client
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=data['messages'],
|
|
api_key=api_key,
|
|
additional_args={"headers": headers, "api_base": api_base, "acompletion": False, "complete_input_dict": data},
|
|
)
|
|
response = openai_client.chat.completions.create(**data)
|
|
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
|
return streamwrapper
|
|
|
|
async def async_streaming(self,
|
|
logging_obj,
|
|
timeout: float,
|
|
data: dict,
|
|
model: str,
|
|
api_key: Optional[str]=None,
|
|
api_base: Optional[str]=None,
|
|
client=None,
|
|
max_retries=None,
|
|
headers=None
|
|
):
|
|
response = None
|
|
try:
|
|
if client is None:
|
|
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
|
|
else:
|
|
openai_aclient = client
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=data['messages'],
|
|
api_key=api_key,
|
|
additional_args={"headers": headers, "api_base": api_base, "acompletion": True, "complete_input_dict": data},
|
|
)
|
|
|
|
response = await openai_aclient.chat.completions.create(**data)
|
|
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
|
|
async for transformed_chunk in streamwrapper:
|
|
yield transformed_chunk
|
|
except Exception as e: # need to exception handle here. async exceptions don't get caught in sync functions.
|
|
if response is not None and hasattr(response, "text"):
|
|
raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
|
|
else:
|
|
if type(e).__name__ == "ReadTimeout":
|
|
raise OpenAIError(status_code=408, message=f"{type(e).__name__}")
|
|
else:
|
|
raise OpenAIError(status_code=500, message=f"{str(e)}")
|
|
async def aembedding(
|
|
self,
|
|
input: list,
|
|
data: dict,
|
|
model_response: ModelResponse,
|
|
timeout: float,
|
|
api_key: Optional[str]=None,
|
|
api_base: Optional[str]=None,
|
|
client=None,
|
|
max_retries=None,
|
|
logging_obj=None
|
|
):
|
|
response = None
|
|
try:
|
|
if client is None:
|
|
openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
|
|
else:
|
|
openai_aclient = client
|
|
response = await openai_aclient.embeddings.create(**data) # type: ignore
|
|
stringified_response = response.model_dump_json()
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=stringified_response,
|
|
)
|
|
return convert_to_model_response_object(response_object=json.loads(stringified_response), model_response_object=model_response, response_type="embedding") # type: ignore
|
|
except Exception as e:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
original_response=str(e),
|
|
)
|
|
raise e
|
|
|
|
def embedding(self,
|
|
model: str,
|
|
input: list,
|
|
timeout: float,
|
|
api_key: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
model_response: Optional[litellm.utils.EmbeddingResponse] = None,
|
|
logging_obj=None,
|
|
optional_params=None,
|
|
client=None,
|
|
aembedding=None,
|
|
):
|
|
super().embedding()
|
|
exception_mapping_worked = False
|
|
try:
|
|
model = model
|
|
data = {
|
|
"model": model,
|
|
"input": input,
|
|
**optional_params
|
|
}
|
|
max_retries = data.pop("max_retries", 2)
|
|
if not isinstance(max_retries, int):
|
|
raise OpenAIError(status_code=422, message="max retries must be an int")
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data, "api_base": api_base},
|
|
)
|
|
|
|
if aembedding == True:
|
|
response = self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
|
|
return response
|
|
if client is None:
|
|
openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
|
|
else:
|
|
openai_client = client
|
|
|
|
## COMPLETION CALL
|
|
response = openai_client.embeddings.create(**data) # type: ignore
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response,
|
|
)
|
|
|
|
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response, response_type="embedding") # type: ignore
|
|
except OpenAIError as e:
|
|
exception_mapping_worked = True
|
|
raise e
|
|
except Exception as e:
|
|
if exception_mapping_worked:
|
|
raise e
|
|
else:
|
|
import traceback
|
|
raise OpenAIError(status_code=500, message=traceback.format_exc())
|
|
|
|
|
|
class OpenAITextCompletion(BaseLLM):
|
|
_client_session: httpx.Client
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self._client_session = self.create_client_session()
|
|
|
|
def validate_environment(self, api_key):
|
|
headers = {
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
return headers
|
|
|
|
def convert_to_model_response_object(self, response_object: Optional[dict]=None, model_response_object: Optional[ModelResponse]=None):
|
|
try:
|
|
## RESPONSE OBJECT
|
|
if response_object is None or model_response_object is None:
|
|
raise ValueError("Error in response object format")
|
|
choice_list=[]
|
|
for idx, choice in enumerate(response_object["choices"]):
|
|
message = Message(content=choice["text"], role="assistant")
|
|
choice = Choices(finish_reason=choice["finish_reason"], index=idx, message=message)
|
|
choice_list.append(choice)
|
|
model_response_object.choices = choice_list
|
|
|
|
if "usage" in response_object:
|
|
model_response_object.usage = response_object["usage"]
|
|
|
|
if "id" in response_object:
|
|
model_response_object.id = response_object["id"]
|
|
|
|
if "model" in response_object:
|
|
model_response_object.model = response_object["model"]
|
|
|
|
model_response_object._hidden_params["original_response"] = response_object # track original response, if users make a litellm.text_completion() request, we can return the original response
|
|
return model_response_object
|
|
except Exception as e:
|
|
raise e
|
|
|
|
def completion(self,
|
|
model_response: ModelResponse,
|
|
api_key: str,
|
|
model: str,
|
|
messages: list,
|
|
print_verbose: Optional[Callable]=None,
|
|
api_base: Optional[str]=None,
|
|
logging_obj=None,
|
|
acompletion: bool = False,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers: Optional[dict]=None):
|
|
super().completion()
|
|
exception_mapping_worked = False
|
|
try:
|
|
if headers is None:
|
|
headers = self.validate_environment(api_key=api_key)
|
|
if model is None or messages is None:
|
|
raise OpenAIError(status_code=422, message=f"Missing model or messages")
|
|
|
|
api_base = f"{api_base}/completions"
|
|
|
|
if len(messages)>0 and "content" in messages[0] and type(messages[0]["content"]) == list:
|
|
prompt = messages[0]["content"]
|
|
else:
|
|
prompt = " ".join([message["content"] for message in messages]) # type: ignore
|
|
|
|
# don't send max retries to the api, if set
|
|
optional_params.pop("max_retries", None)
|
|
|
|
data = {
|
|
"model": model,
|
|
"prompt": prompt,
|
|
**optional_params
|
|
}
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
additional_args={"headers": headers, "api_base": api_base, "complete_input_dict": data},
|
|
)
|
|
if acompletion == True:
|
|
if optional_params.get("stream", False):
|
|
return self.async_streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
|
|
else:
|
|
return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response, prompt=prompt, api_key=api_key, logging_obj=logging_obj, model=model) # type: ignore
|
|
elif optional_params.get("stream", False):
|
|
return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
|
|
else:
|
|
response = httpx.post(
|
|
url=f"{api_base}",
|
|
json=data,
|
|
headers=headers,
|
|
)
|
|
if response.status_code != 200:
|
|
raise OpenAIError(status_code=response.status_code, message=response.text)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
original_response=response,
|
|
additional_args={
|
|
"headers": headers,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
|
|
except Exception as e:
|
|
raise e
|
|
|
|
async def acompletion(self,
|
|
logging_obj,
|
|
api_base: str,
|
|
data: dict,
|
|
headers: dict,
|
|
model_response: ModelResponse,
|
|
prompt: str,
|
|
api_key: str,
|
|
model: str):
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.post(api_base, json=data, headers=headers, timeout=litellm.request_timeout)
|
|
response_json = response.json()
|
|
if response.status_code != 200:
|
|
raise OpenAIError(status_code=response.status_code, message=response.text)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
original_response=response,
|
|
additional_args={
|
|
"headers": headers,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
return self.convert_to_model_response_object(response_object=response_json, model_response_object=model_response)
|
|
|
|
def streaming(self,
|
|
logging_obj,
|
|
api_base: str,
|
|
data: dict,
|
|
headers: dict,
|
|
model_response: ModelResponse,
|
|
model: str
|
|
):
|
|
with httpx.stream(
|
|
url=f"{api_base}",
|
|
json=data,
|
|
headers=headers,
|
|
method="POST",
|
|
timeout=litellm.request_timeout
|
|
) as response:
|
|
if response.status_code != 200:
|
|
raise OpenAIError(status_code=response.status_code, message=response.text)
|
|
|
|
streamwrapper = CustomStreamWrapper(completion_stream=response.iter_lines(), model=model, custom_llm_provider="text-completion-openai",logging_obj=logging_obj)
|
|
for transformed_chunk in streamwrapper:
|
|
yield transformed_chunk
|
|
|
|
async def async_streaming(self,
|
|
logging_obj,
|
|
api_base: str,
|
|
data: dict,
|
|
headers: dict,
|
|
model_response: ModelResponse,
|
|
model: str):
|
|
client = httpx.AsyncClient()
|
|
async with client.stream(
|
|
url=f"{api_base}",
|
|
json=data,
|
|
headers=headers,
|
|
method="POST",
|
|
timeout=litellm.request_timeout
|
|
) as response:
|
|
if response.status_code != 200:
|
|
raise OpenAIError(status_code=response.status_code, message=response.text)
|
|
|
|
streamwrapper = CustomStreamWrapper(completion_stream=response.aiter_lines(), model=model, custom_llm_provider="text-completion-openai",logging_obj=logging_obj)
|
|
async for transformed_chunk in streamwrapper:
|
|
yield transformed_chunk |