mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* build(pyproject.toml): add new dev dependencies - for type checking * build: reformat files to fit black * ci: reformat to fit black * ci(test-litellm.yml): make tests run clear * build(pyproject.toml): add ruff * fix: fix ruff checks * build(mypy/): fix mypy linting errors * fix(hashicorp_secret_manager.py): fix passing cert for tls auth * build(mypy/): resolve all mypy errors * test: update test * fix: fix black formatting * build(pre-commit-config.yaml): use poetry run black * fix(proxy_server.py): fix linting error * fix: fix ruff safe representation error
450 lines
16 KiB
Python
450 lines
16 KiB
Python
"""
|
|
Redis Semantic Cache implementation for LiteLLM
|
|
|
|
The RedisSemanticCache provides semantic caching functionality using Redis as a backend.
|
|
This cache stores responses based on the semantic similarity of prompts rather than
|
|
exact matching, allowing for more flexible caching of LLM responses.
|
|
|
|
This implementation uses RedisVL's SemanticCache to find semantically similar prompts
|
|
and their cached responses.
|
|
"""
|
|
|
|
import ast
|
|
import asyncio
|
|
import json
|
|
import os
|
|
from typing import Any, Dict, List, Optional, Tuple, cast
|
|
|
|
import litellm
|
|
from litellm._logging import print_verbose
|
|
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
|
get_str_from_messages,
|
|
)
|
|
from litellm.types.utils import EmbeddingResponse
|
|
|
|
from .base_cache import BaseCache
|
|
|
|
|
|
class RedisSemanticCache(BaseCache):
|
|
"""
|
|
Redis-backed semantic cache for LLM responses.
|
|
|
|
This cache uses vector similarity to find semantically similar prompts that have been
|
|
previously sent to the LLM, allowing for cache hits even when prompts are not identical
|
|
but carry similar meaning.
|
|
"""
|
|
|
|
DEFAULT_REDIS_INDEX_NAME: str = "litellm_semantic_cache_index"
|
|
|
|
def __init__(
|
|
self,
|
|
host: Optional[str] = None,
|
|
port: Optional[str] = None,
|
|
password: Optional[str] = None,
|
|
redis_url: Optional[str] = None,
|
|
similarity_threshold: Optional[float] = None,
|
|
embedding_model: str = "text-embedding-ada-002",
|
|
index_name: Optional[str] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Initialize the Redis Semantic Cache.
|
|
|
|
Args:
|
|
host: Redis host address
|
|
port: Redis port
|
|
password: Redis password
|
|
redis_url: Full Redis URL (alternative to separate host/port/password)
|
|
similarity_threshold: Threshold for semantic similarity (0.0 to 1.0)
|
|
where 1.0 requires exact matches and 0.0 accepts any match
|
|
embedding_model: Model to use for generating embeddings
|
|
index_name: Name for the Redis index
|
|
ttl: Default time-to-live for cache entries in seconds
|
|
**kwargs: Additional arguments passed to the Redis client
|
|
|
|
Raises:
|
|
Exception: If similarity_threshold is not provided or required Redis
|
|
connection information is missing
|
|
"""
|
|
from redisvl.extensions.llmcache import SemanticCache
|
|
from redisvl.utils.vectorize import CustomTextVectorizer
|
|
|
|
if index_name is None:
|
|
index_name = self.DEFAULT_REDIS_INDEX_NAME
|
|
|
|
print_verbose(f"Redis semantic-cache initializing index - {index_name}")
|
|
|
|
# Validate similarity threshold
|
|
if similarity_threshold is None:
|
|
raise ValueError("similarity_threshold must be provided, passed None")
|
|
|
|
# Store configuration
|
|
self.similarity_threshold = similarity_threshold
|
|
|
|
# Convert similarity threshold [0,1] to distance threshold [0,2]
|
|
# For cosine distance: 0 = most similar, 2 = least similar
|
|
# While similarity: 1 = most similar, 0 = least similar
|
|
self.distance_threshold = 1 - similarity_threshold
|
|
self.embedding_model = embedding_model
|
|
|
|
# Set up Redis connection
|
|
if redis_url is None:
|
|
try:
|
|
# Attempt to use provided parameters or fallback to environment variables
|
|
host = host or os.environ["REDIS_HOST"]
|
|
port = port or os.environ["REDIS_PORT"]
|
|
password = password or os.environ["REDIS_PASSWORD"]
|
|
except KeyError as e:
|
|
# Raise a more informative exception if any of the required keys are missing
|
|
missing_var = e.args[0]
|
|
raise ValueError(
|
|
f"Missing required Redis configuration: {missing_var}. "
|
|
f"Provide {missing_var} or redis_url."
|
|
) from e
|
|
|
|
redis_url = f"redis://:{password}@{host}:{port}"
|
|
|
|
print_verbose(f"Redis semantic-cache redis_url: {redis_url}")
|
|
|
|
# Initialize the Redis vectorizer and cache
|
|
cache_vectorizer = CustomTextVectorizer(self._get_embedding)
|
|
|
|
self.llmcache = SemanticCache(
|
|
name=index_name,
|
|
redis_url=redis_url,
|
|
vectorizer=cache_vectorizer,
|
|
distance_threshold=self.distance_threshold,
|
|
overwrite=False,
|
|
)
|
|
|
|
def _get_ttl(self, **kwargs) -> Optional[int]:
|
|
"""
|
|
Get the TTL (time-to-live) value for cache entries.
|
|
|
|
Args:
|
|
**kwargs: Keyword arguments that may contain a custom TTL
|
|
|
|
Returns:
|
|
Optional[int]: The TTL value in seconds, or None if no TTL should be applied
|
|
"""
|
|
ttl = kwargs.get("ttl")
|
|
if ttl is not None:
|
|
ttl = int(ttl)
|
|
return ttl
|
|
|
|
def _get_embedding(self, prompt: str) -> List[float]:
|
|
"""
|
|
Generate an embedding vector for the given prompt using the configured embedding model.
|
|
|
|
Args:
|
|
prompt: The text to generate an embedding for
|
|
|
|
Returns:
|
|
List[float]: The embedding vector
|
|
"""
|
|
# Create an embedding from prompt
|
|
embedding_response = cast(
|
|
EmbeddingResponse,
|
|
litellm.embedding(
|
|
model=self.embedding_model,
|
|
input=prompt,
|
|
cache={"no-store": True, "no-cache": True},
|
|
),
|
|
)
|
|
embedding = embedding_response["data"][0]["embedding"]
|
|
return embedding
|
|
|
|
def _get_cache_logic(self, cached_response: Any) -> Any:
|
|
"""
|
|
Process the cached response to prepare it for use.
|
|
|
|
Args:
|
|
cached_response: The raw cached response
|
|
|
|
Returns:
|
|
The processed cache response, or None if input was None
|
|
"""
|
|
if cached_response is None:
|
|
return cached_response
|
|
|
|
# Convert bytes to string if needed
|
|
if isinstance(cached_response, bytes):
|
|
cached_response = cached_response.decode("utf-8")
|
|
|
|
# Convert string representation to Python object
|
|
try:
|
|
cached_response = json.loads(cached_response)
|
|
except json.JSONDecodeError:
|
|
try:
|
|
cached_response = ast.literal_eval(cached_response)
|
|
except (ValueError, SyntaxError) as e:
|
|
print_verbose(f"Error parsing cached response: {str(e)}")
|
|
return None
|
|
|
|
return cached_response
|
|
|
|
def set_cache(self, key: str, value: Any, **kwargs) -> None:
|
|
"""
|
|
Store a value in the semantic cache.
|
|
|
|
Args:
|
|
key: The cache key (not directly used in semantic caching)
|
|
value: The response value to cache
|
|
**kwargs: Additional arguments including 'messages' for the prompt
|
|
and optional 'ttl' for time-to-live
|
|
"""
|
|
print_verbose(f"Redis semantic-cache set_cache, kwargs: {kwargs}")
|
|
|
|
value_str: Optional[str] = None
|
|
try:
|
|
# Extract the prompt from messages
|
|
messages = kwargs.get("messages", [])
|
|
if not messages:
|
|
print_verbose("No messages provided for semantic caching")
|
|
return
|
|
|
|
prompt = get_str_from_messages(messages)
|
|
value_str = str(value)
|
|
|
|
# Get TTL and store in Redis semantic cache
|
|
ttl = self._get_ttl(**kwargs)
|
|
if ttl is not None:
|
|
self.llmcache.store(prompt, value_str, ttl=int(ttl))
|
|
else:
|
|
self.llmcache.store(prompt, value_str)
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"Error setting {value_str or value} in the Redis semantic cache: {str(e)}"
|
|
)
|
|
|
|
def get_cache(self, key: str, **kwargs) -> Any:
|
|
"""
|
|
Retrieve a semantically similar cached response.
|
|
|
|
Args:
|
|
key: The cache key (not directly used in semantic caching)
|
|
**kwargs: Additional arguments including 'messages' for the prompt
|
|
|
|
Returns:
|
|
The cached response if a semantically similar prompt is found, else None
|
|
"""
|
|
print_verbose(f"Redis semantic-cache get_cache, kwargs: {kwargs}")
|
|
|
|
try:
|
|
# Extract the prompt from messages
|
|
messages = kwargs.get("messages", [])
|
|
if not messages:
|
|
print_verbose("No messages provided for semantic cache lookup")
|
|
return None
|
|
|
|
prompt = get_str_from_messages(messages)
|
|
# Check the cache for semantically similar prompts
|
|
results = self.llmcache.check(prompt=prompt)
|
|
|
|
# Return None if no similar prompts found
|
|
if not results:
|
|
return None
|
|
|
|
# Process the best matching result
|
|
cache_hit = results[0]
|
|
vector_distance = float(cache_hit["vector_distance"])
|
|
|
|
# Convert vector distance back to similarity score
|
|
# For cosine distance: 0 = most similar, 2 = least similar
|
|
# While similarity: 1 = most similar, 0 = least similar
|
|
similarity = 1 - vector_distance
|
|
|
|
cached_prompt = cache_hit["prompt"]
|
|
cached_response = cache_hit["response"]
|
|
|
|
print_verbose(
|
|
f"Cache hit: similarity threshold: {self.similarity_threshold}, "
|
|
f"actual similarity: {similarity}, "
|
|
f"current prompt: {prompt}, "
|
|
f"cached prompt: {cached_prompt}"
|
|
)
|
|
|
|
return self._get_cache_logic(cached_response=cached_response)
|
|
except Exception as e:
|
|
print_verbose(f"Error retrieving from Redis semantic cache: {str(e)}")
|
|
|
|
async def _get_async_embedding(self, prompt: str, **kwargs) -> List[float]:
|
|
"""
|
|
Asynchronously generate an embedding for the given prompt.
|
|
|
|
Args:
|
|
prompt: The text to generate an embedding for
|
|
**kwargs: Additional arguments that may contain metadata
|
|
|
|
Returns:
|
|
List[float]: The embedding vector
|
|
"""
|
|
from litellm.proxy.proxy_server import llm_model_list, llm_router
|
|
|
|
# Route the embedding request through the proxy if appropriate
|
|
router_model_names = (
|
|
[m["model_name"] for m in llm_model_list]
|
|
if llm_model_list is not None
|
|
else []
|
|
)
|
|
|
|
try:
|
|
if llm_router is not None and self.embedding_model in router_model_names:
|
|
# Use the router for embedding generation
|
|
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
|
|
embedding_response = await llm_router.aembedding(
|
|
model=self.embedding_model,
|
|
input=prompt,
|
|
cache={"no-store": True, "no-cache": True},
|
|
metadata={
|
|
"user_api_key": user_api_key,
|
|
"semantic-cache-embedding": True,
|
|
"trace_id": kwargs.get("metadata", {}).get("trace_id", None),
|
|
},
|
|
)
|
|
else:
|
|
# Generate embedding directly
|
|
embedding_response = await litellm.aembedding(
|
|
model=self.embedding_model,
|
|
input=prompt,
|
|
cache={"no-store": True, "no-cache": True},
|
|
)
|
|
|
|
# Extract and return the embedding vector
|
|
return embedding_response["data"][0]["embedding"]
|
|
except Exception as e:
|
|
print_verbose(f"Error generating async embedding: {str(e)}")
|
|
raise ValueError(f"Failed to generate embedding: {str(e)}") from e
|
|
|
|
async def async_set_cache(self, key: str, value: Any, **kwargs) -> None:
|
|
"""
|
|
Asynchronously store a value in the semantic cache.
|
|
|
|
Args:
|
|
key: The cache key (not directly used in semantic caching)
|
|
value: The response value to cache
|
|
**kwargs: Additional arguments including 'messages' for the prompt
|
|
and optional 'ttl' for time-to-live
|
|
"""
|
|
print_verbose(f"Async Redis semantic-cache set_cache, kwargs: {kwargs}")
|
|
|
|
try:
|
|
# Extract the prompt from messages
|
|
messages = kwargs.get("messages", [])
|
|
if not messages:
|
|
print_verbose("No messages provided for semantic caching")
|
|
return
|
|
|
|
prompt = get_str_from_messages(messages)
|
|
value_str = str(value)
|
|
|
|
# Generate embedding for the value (response) to cache
|
|
prompt_embedding = await self._get_async_embedding(prompt, **kwargs)
|
|
|
|
# Get TTL and store in Redis semantic cache
|
|
ttl = self._get_ttl(**kwargs)
|
|
if ttl is not None:
|
|
await self.llmcache.astore(
|
|
prompt,
|
|
value_str,
|
|
vector=prompt_embedding, # Pass through custom embedding
|
|
ttl=ttl,
|
|
)
|
|
else:
|
|
await self.llmcache.astore(
|
|
prompt,
|
|
value_str,
|
|
vector=prompt_embedding, # Pass through custom embedding
|
|
)
|
|
except Exception as e:
|
|
print_verbose(f"Error in async_set_cache: {str(e)}")
|
|
|
|
async def async_get_cache(self, key: str, **kwargs) -> Any:
|
|
"""
|
|
Asynchronously retrieve a semantically similar cached response.
|
|
|
|
Args:
|
|
key: The cache key (not directly used in semantic caching)
|
|
**kwargs: Additional arguments including 'messages' for the prompt
|
|
|
|
Returns:
|
|
The cached response if a semantically similar prompt is found, else None
|
|
"""
|
|
print_verbose(f"Async Redis semantic-cache get_cache, kwargs: {kwargs}")
|
|
|
|
try:
|
|
# Extract the prompt from messages
|
|
messages = kwargs.get("messages", [])
|
|
if not messages:
|
|
print_verbose("No messages provided for semantic cache lookup")
|
|
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
|
|
return None
|
|
|
|
prompt = get_str_from_messages(messages)
|
|
|
|
# Generate embedding for the prompt
|
|
prompt_embedding = await self._get_async_embedding(prompt, **kwargs)
|
|
|
|
# Check the cache for semantically similar prompts
|
|
results = await self.llmcache.acheck(prompt=prompt, vector=prompt_embedding)
|
|
|
|
# handle results / cache hit
|
|
if not results:
|
|
kwargs.setdefault("metadata", {})[
|
|
"semantic-similarity"
|
|
] = 0.0 # TODO why here but not above??
|
|
return None
|
|
|
|
cache_hit = results[0]
|
|
vector_distance = float(cache_hit["vector_distance"])
|
|
|
|
# Convert vector distance back to similarity
|
|
# For cosine distance: 0 = most similar, 2 = least similar
|
|
# While similarity: 1 = most similar, 0 = least similar
|
|
similarity = 1 - vector_distance
|
|
|
|
cached_prompt = cache_hit["prompt"]
|
|
cached_response = cache_hit["response"]
|
|
|
|
# update kwargs["metadata"] with similarity, don't rewrite the original metadata
|
|
kwargs.setdefault("metadata", {})["semantic-similarity"] = similarity
|
|
|
|
print_verbose(
|
|
f"Cache hit: similarity threshold: {self.similarity_threshold}, "
|
|
f"actual similarity: {similarity}, "
|
|
f"current prompt: {prompt}, "
|
|
f"cached prompt: {cached_prompt}"
|
|
)
|
|
|
|
return self._get_cache_logic(cached_response=cached_response)
|
|
except Exception as e:
|
|
print_verbose(f"Error in async_get_cache: {str(e)}")
|
|
kwargs.setdefault("metadata", {})["semantic-similarity"] = 0.0
|
|
|
|
async def _index_info(self) -> Dict[str, Any]:
|
|
"""
|
|
Get information about the Redis index.
|
|
|
|
Returns:
|
|
Dict[str, Any]: Information about the Redis index
|
|
"""
|
|
aindex = await self.llmcache._get_async_index()
|
|
return await aindex.info()
|
|
|
|
async def async_set_cache_pipeline(
|
|
self, cache_list: List[Tuple[str, Any]], **kwargs
|
|
) -> None:
|
|
"""
|
|
Asynchronously store multiple values in the semantic cache.
|
|
|
|
Args:
|
|
cache_list: List of (key, value) tuples to cache
|
|
**kwargs: Additional arguments
|
|
"""
|
|
try:
|
|
tasks = []
|
|
for val in cache_list:
|
|
tasks.append(self.async_set_cache(val[0], val[1], **kwargs))
|
|
await asyncio.gather(*tasks)
|
|
except Exception as e:
|
|
print_verbose(f"Error in async_set_cache_pipeline: {str(e)}")
|